

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT

Programa de Pós-Graduação em Ciência e Engenharia de Materiais – PGCEM / Mestrado e Doutorado

DISCIPLINA: FÍSICO-QUÍMICA DE POLÍMEROS

SIGLA: FQP

CARGA HORÁRIA TOTAL: 60 | TEORIA: 60 | PRÁTICA: | CÓDIGO: 207

CURSO: Programa de Pós-Graduação em Ciência e Engenharia de Materiais – PGCEM / Mestrado e Doutorado

SEMESTRE/ANO:

PRÉ-REQUISITOS:

PROFESSOR RESPONSÁVEL: Prof. Dr. Sergio Henrique Pezzin e Prof. Dr. Luiz Antonio Ferreira Coelho

EMENTA

 Estrutura molecular. Propriedades termodinâmicas de soluções poliméricas. Difusão em sistemas poliméricos. Transformações em polímeros. Propriedades térmicas. Propriedades Mecânicas. Viscoelasticidade. Reologia. Propriedades elétricas.

CONTEÚDO PROGRAMÁTICO

PARTE 1.

Estrutura Molecular de Polímeros

- 1.1. Conceito de macromolécula
- 1.2. Classificação de Polímeros
- 1.3. Polímeros Termoplásticos
- 1.4. Polímeros Termorrígidos ou Termofixos
- 1.5. Elastômeros
- 1.6. Arquitetura Molecular Estereoisomerismo e Morfologia
- 1.7. Cristalinidade
- 1.8. Transições de fase $-T_g$, T_c e T_m
- 1.9. Distribuição de Massa Molecular

PARTE 2.

Métodos de Polimerização e Reações Químicas de Polímeros

- 2.1. Polimerização por condensação poliesterificação e poliamidação
- 2.2. Cinética de polimerização por etapa
- 2.3. Polimerização por adição
- 2.4. Cinética de polimerização por adição Relação entre os processos de polimerização e a distribuição de massa molecular
- 2.5. Copolimerização copolímeros em bloco e enxertados

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT

Programa de Pós-Graduação em Ciência e Engenharia de Materiais – PGCEM / Mestrado e Doutorado

- 2.6. Meios físicos de polimerização em massa, em solução e em suspensão
- 2.7. Polimerização por emulsão
- 2.8. Reações químicas dos polímeros funcionalização e formação de IPN's

PARTE 3.

Propriedades Termodinâmicas de Soluções Poliméricas

- 3.1. Relações termodinâmicas gerais para soluções poliméricas
- 3.2. Entalpia e energia livre de mistura
- 3.3. Teoria de Flory-Huggins e teorias de equação de estado
- 3.4. Soluções poliméricas diluídas
- 3.5. Equilíbrio de fases Diagramas de fases binários e terciários
- 3.6. Mecanismos de separação de fases
- 3.7. Blendas poliméricas: miscibilidade e compatibilidade

PARTE 4.

Difusão em Sistemas Poliméricos

- 4.1. Definições de coeficiente de difusão e permeabilidade
- 4.2. Medidas de sorção-dessorção
- 4.3. Aplicação da teoria de difusão a polímeros
- 4.4. Permeação através de estruturas de multicamadas
- 4.5. Relações entre estrutura e propriedades de difusão

PARTE 5.

Transformações em Polímeros

- 5.1. Comportamento de deformação de termoplásticos Viscoelasticidade
- 5.2. Mecanismos de relaxação em polímeros
- 5.3. Transição vítrea Teoria do volume livre
- 5.4. Cristalização e fusão
- 5.5. Teoria da elasticidade da borracha
- 5.6. Transformações morfológicas

PARTE 6.

Propriedades Mecânicas

- 6.1. Medidas do módulo de elasticidade
- 6.2. Medidas do módulo de flexão
- 6.3. Medidas do módulo de cisalhamento
- 6.4. Testes padrão para avaliações de rotina e controle de qualidade
- 6.5. Propriedades termo-mecânicas Temperatura de distorção pelo calor (HDT)

PARTE 7.

Reologia

- 7.1. Classificação de processos primários
- 7.2. Interpretações das características de processamento de termoplásticos em termos do comportamento reológico`
- 7.3. O estado de transição 'vítreo-elástico'
- 7.4. O estado 'elástico'
- 7.5. 'Orientação' em polímeros

UNIVERSIDADE DO ESTADO DE SANTA CATARINA - UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS - CCT

Programa de Pós-Graduação em Ciência e Engenharia de Materiais – PGCEM / Mestrado e Doutorado

- 7.6. O estado 'fundido'
- 7.7. Fenômenos interfaciais
- 7.8. Métodos de caracterização do comportamento reológico de polímeros
- 7.9. Reologia de soluções poliméricas

PARTE 8.

Propriedades Elétricas

- 8.1. Resistividade, impedância específica e permissividade
- 8.2. Medidas de propriedades elétricas
- 8.3. Polímeros condutores

BIBLIOGRAFIA

- 1. Textbook of Polymer Science; F. W. Billmeyer Jr. (ed.); Wiley-Interscience, New York, 1984.
- 2. Química Orgânica; N. L. Allinger, M. P. Cava, D. C. Jongh, C. R. Johnson, N. A. Lebel e C. L. Stevens; Guanabara Dois, Rio de Janeiro, 1978.
- 3. Eloisa B. Mano; Introdução a Polímeros; Ed. Edgard Blücher, SP, 1990.
- 4. Ciência dos Polímeros; Sebastião V. Canevarolo Jr.; Artliber, SP, 2002.
- 5. Principles of Polymerization, G. Odian; McGraw-Hill, NY, 1970.
- 6. Principles of Polymer Chemistry; P. J. Flory; 16th. Ed., Cornell University Press; Ithaca, 1995.
- 7. Thermoplastics Materials Engineering; L. Mascia; 2nd. Ed., Elsevier, Londres; 1989.
- 8. Polymer Solutions; H. Fujita; Studies in Polymer Science 9, Elsevier, Amsterdam, 1997.
- 9. Polymer Alloys and Blends Thermodynamics and Rheology; L. A. Utracki; Hanser Publishers, Munique, 1990.
- 10. Specific Interactions and the Miscibility of Polymer Blends; N. M. Coleman, J. F. Graf e P. C. Painter; Technomic, Lancaster, 1991.
- 11. Mechanical Properties of Polymers and Composites; L. E. Nielsen; Marcel Dekker, NY, 1974.
- 12. Engineering Materials An Introduction to their Properties and Applications; M. F. Ashby e D. R. H. Jones; Pergamon Press, Oxford, 1988.
- 13. Properties of Polymers; D. W. van Krevelen, Elsevier, 1994.
- 14. CHALLA, G. e HORWOOD, E., Polymer Chemistry, 1993.
- 15. OLABISI, O., ROBESON, L.M., SHAWN, M.T., *Polymer-Polymer Miscibility*. Academic Press, N.Y., 1979