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ABSTRACT

Stamping of automotive parts is a process of forming metal parts that are used in the
manufacture of automobiles, such as the Inner Rear Door. The problem is character-
ized as a multi-objective optimization problem, as it involves the optimization of multiple
antagonistic objectives simultaneously. In this study, Random Forest and Extra Tree
multivariate regression algorithms were used to characterize the problem and use it as
a replacement model for the Non-Dominated Genetic Sorting Algorithm II. Our goal is
to explore the possibilities of simultaneously minimizing fracture, insufficient stretching,
and wrinkling. In this work, two case studies were analyzed: one of a laboratory nature,
called "Cup", and another related to the Internal Tailgate Door of a vehicle. The results
obtained through the proposed approach highlight the effectiveness of the model, con-
tributing to the identification of a more efficient solution. Notably, the results revealed
an approximately 15% reduction in wrinkling and an 8% reduction in under stretch in
the Internal Tailgate Door study when compared to the previously used methodology.

Key-words: Multi-objective Optimization, Surrogate Model, Evolutionary Computing,
Automotive Industry, Metal Stamping.
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RESUMO

A estampagem de peças automotivas é um processo de conformação de peças me-
tálicas que são utilizadas na fabricação de automóveis, como a Porta Traseira Interna.
O problema é caracterizado como um problema de otimização multiobjetivo, pois en-
volve a otimização de múltiplos objetivos antagônicos simultaneamente. Neste estudo,
utilizou-se algoritmo de regressão multivariada Random Forest e Extra Tree para ca-
racterizar o problema e utilizá-lo como modelo substituto para o Algoritmo Genético de
Ordenação Não Dominada II. Nosso objetivo é explorar as possibilidades de minimi-
zar simultaneamente Fratura, Alongamento Insuficiente e Enrugamento. Neste traba-
lho, foram analisados dois estudos de caso: um de natureza laboratorial, denominado
"Copinho", e outro relacionado à Porta Traseira Interna de um veículo. Os resultados
obtidos por meio da abordagem proposta destacam a eficácia do modelo, contribuindo
para a identificação de uma solução mais eficiente. Notavelmente, os resultados reve-
laram uma redução de aproximadamente 15% no enrugamento e 8% no estiramento
insuficiente no estudo da Porta Traseira Interna, ao compararmos com a metodologia
previamente utilizada.

Palavras-chave: Otimização Multiobjetivo, Modelo Substituto, Computação Evolutiva,
Indústria Automotiva, Estampagem de Metais.
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1 INTRODUCTION

The Industry 4.0 concept emerged in 2011 at the Hanover fair in Germany,
presenting several cutting-edge industrial futuristic concepts. Since then, in a natural
process, companies have been rapidly transforming with the support of intelligent tools
delivered to the market. Among the tools currently used, many are focused on compu-
tational intelligence, which has been generating several opportunities for research and
development in different areas (COSTA, 2019).

The automotive industry tends to be a pioneer when it comes to investment
in research and development. Because of this, the evolution of increasingly elaborate
and innovative solutions has been presented to the market. During the last decades, a
growing improvement in requirements such as safety, efficiency, ergonomics, and econ-
omy can be observed. This is due to significant improvements on different fronts, such
as raw materials, with the creation of new, more efficient steel alloys; improvements in
manufacturing processes, such as process automation and machinery evolution; and
the development of intelligent tools to support decision-making (ATZEMA, 2017).

One of the manufacturing processes that has evolved over the last few years
is the sheet metal stamping process, a process widely used in the automobile industry,
where controlled deformation of metal sheets occurs, with high demand levels, high
productivity, low scrapping, low cost, high finish, and accuracy (MA; HUANG et al.,
2014). The process aims to generate a form from the raw materials used, which is very
useful in serial industrial systems. The set of parts necessary to carry out a stamping
is composed of a matrix with the negative shape of the part’s profile, a blank to restrict
the movement of the plate, and a punch that allows the penetration of the plate into the
matrix, making the final part as the desired shape.

The stamping process has a significant influence on the final quality of molded
parts (HOSFORD; CADDELL, 2011). Finite element analysis has often been used as
a valuable testing method to evaluate stamping formability and to help define better
parameters for the machines responsible for the stamping process in the factory. How-
ever, when a more in-depth analysis is required involving a high number of simulations,
challenges arise in terms of industrial scalability. This is due to some factors, such as
excessive time required to run the simulations, the need for qualified labor for analysis,
and high-performance hardware to support the simulations (KAZAN; FIRAT; TIRYAKI,
2009).

Currently, professionals in the field use their knowledge to manually config-
ure a wide range of parameters in order to find the best scenarios with the help of
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finite element analysis tools. The big problem with this method is making the process
biased towards the developer’s vision and experience since the ideal combination to
minimize failures is primarily based on experience and trial and error steps (TEKKAYA,
2000). For this reason, remaining in the empirical state can delay development, as well
as increase the risk of problems occurring throughout the production process. This
gap represents the possibility of expanding knowledge of current metallurgy, opening
new doors for new applications and opportunities, thus offering new mathematical and
computational tools to assist in decision-making on the best parameters for automotive
stamping.

The problem addressed involves minimizing failures in the stamping process
of automotive parts to reduce considerably the financial and environmental losses. To
deal with this challenge, it is essential to find an ideal set of parameters that when
applied, minimize the occurrence of failures. However, it is essential to highlight that
these objectives are often antagonistic, which means that minimizing one of them can
directly affect the others.

Given the complexity of the stamping process, several approaches have been
applied to address these challenges (PARK; KIM, 1995). One of them is the use of
evolutionary multi-objective optimization techniques, which allow the advanced search
for optimal solutions that would otherwise be unfeasible or very difficult to find manually.
These evolutionary algorithms can explore the solution space more efficiently, finding
trade-offs between objectives and providing a set of Pareto-optimal solutions (LINDEN,
2008).

Furthermore, the application of Machine Learning (ML) algorithms as surro-
gate models has demonstrated great potential in dealing with complex problems such
as those presented in the works (SGROTT, 2022) (BAO et al., 2022) (BRENDEL et al.,
2021). The substitute models aim to help represent these problems, allowing a quick
and efficient approach. They can later be used as input models in other operations,
such as optimization, through evolutionary algorithms (JIANG et al., 2020).

Faced with the numerous challenges in the stamping process, several studies
have presented different approaches to improve this stage, such as the works (CUI et
al., 2020) (BRENDEL et al., 2021) (XIE et al., 2022). Based on solutions previously
described in the literature, this work proposes the development of a computational sys-
tem for optimizing the automotive stamping process, suggesting stamping parameters,
using ML algorithms as substitute models coupled to multi-objective optimization algo-
rithms, with This aims to reduce the inside of regions with three main faults, namely,
wrinkling (WRI), insufficient stretching (IS), and fracture (FRA).

This work uses ML, in particular, the ExtraTree Regressor (ET) algorithm, as
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a predictive model to update the stamping process of any automotive part that uses
the "Deep draw" process, employing a multivariate regression approach (CHANKONG;
HAIMES, 2008). The choice of ExtraTree Regressor as an algorithm is based on its
intrinsic characteristics, such as speed in training and greater interpretability of the
results obtained. The ET algorithm inputs include steel stamping parameters and do-
mains, machine parameters, and dimensional information. At the same time, its outputs
are the result of the part’s conformation, the percentage of area with the possibility of
FRA, IS, and WRI. Furthermore, ET is integrated with a Multi-Objective Evolutionary
Algorithm (MOEA) for optimization, using ET predictions as an evaluation function to
guide the evolution of different solutions towards the desired shape of the parts. Some
studies, such as (RAHIMI et al., 2023) and (RIBEIRO, 2016), carried out compara-
tive analyses of genetic algorithms to evaluate their performance in different scenarios.
These investigations highlight the promising results obtained by the Non-Dominated
Classification Genetic Algorithm (NSGA-II) in multi-objective problems. Therefore, in
this work, NSGA-II is used to manage candidate solutions for Pareto optimal optimiza-
tion (DEB et al., 2002).

Case studies were conducted to validate the proposed model, both through
computer simulations and practical experiments. Through the using some algorithms,
it was possible to evaluate the capacity of the model in different contexts. The analysis
of different case studies allowed the identification of the limitations of the model and
the understanding of the impacts of its application.

These case studies provided a comprehensive assessment of the model, ex-
ploring its effectiveness and performance under different scenarios and conditions. By
performing a variety of experiments and simulations, it was possible to gain valuable
insights into the capabilities and strengths of the model, as well as identify any con-
straints and challenges to be faced.

1.1 MOTIVATION

There are many factors involved in stamping automotive parts, such as material
properties, manufacturing operating conditions, cost, sustainability, safety, final quality,
and product scalability.

Consequently, the search for instruments that facilitate decision-making in choos-
ing ideal stamping configurations, directing the granting of components with superior
operational performance in various applications, becomes a growing trend. In this con-
text, opportunities arise to improve stamping procedures through the application of
intelligent computational models.
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1.2 OBJECTIVES

The main objective of this work is to develop a prediction system based on
computational intelligence capable of proposing the best parameters for stamping au-
tomotive parts. To achieve this, the prediction mechanism used in the project must
contain a model capable of generating genetic diversity by exploring different solutions
for users in a multi-objective scenario.

The following are some secondary objectives, which will build the steps to
achieve the main objective:

• Research for implemented tools implemented to optimize the automotive stamp-
ing process.

• Develop software to help extract data from the AutoForm simulator, enabling an
increase in the amount of data and accelerating the document extraction step.

• Develop algorithms capable of replicating numerical calculations performed by
the AutoForm software since it does not provide the desired objective information,
namely WRI, IS, and FRA.

• Develop exploratory data analysis, which enables a deeper understanding of the
selection of parameters and domains used to generate the database.

• Create a model for each automotive part using ET so that the model can be
trusted and accurately represent the modeled element.

• Deepen the understanding of the surrogate model through the application of sen-
sitivity analysis techniques.

• Develop a multi-objective solution exploration system using evolutionary opti-
mization algorithms.

• Apply methods and tools to analyze optimization results, allowing assessment of
resulting diversity and convergence.

1.3 SCIENTIFIC CONTRIBUTIONS

During this work, some intermediate scientific contributions were made, which
are briefly described below:

The paper titled "Automotive Stamping Process Optimization Using ML and
Multi-objective Evolutionary Algorithm" (SILVA et al., 2023a), was presented at the In-
ternational Conference on Intelligent Systems Design and Applications (ISDA) in 2022,
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aims to optimize the process of selecting stamping parameters for the manufacture of
a fundamental part, the roof of a vehicle, a flat surface with few details.

In this study, an approach is employed that combines the ML Random Forest
(RF) algorithm as a surrogate model coupled with the multi-objective genetic algorithm
NSGA-II. The case study involved the analysis of three input variables and three output
variables for a restricted database with a number of 200 experiments.

The results obtained in the study were promising, with a significant reduction
in wrinkling and insufficient stretch objectives.

The second work is titled "Surrogate Model and Multi-objective Evolutionary
Algorithm Applied to Automotive Stamping" (SILVA et al., 2023b). It was presented
at the XVI Brazilian Conference on Computational Intelligence (CBIC) in 2023. In it,
complementary analysis tools are presented to help understanding the intermediate
steps of the hybrid model proposed in this thesis. The primary purpose of these tools
is to assist users in making early decisions, mainly in anticipating possible errors in the
inadequate selection of simulation parameters and domains.

These tools were applied in two case studies, one on a laboratory part and
the other on a real automotive part. Both demonstrated good results, both in terms of
optimization and the interpretability of the proposed model.

The results obtained in the study were promising, with a significant reduction in
wrinkling and insufficient stretch in the Internal Tailgate case study. Furthermore, in the
Copinho case study, the tools provided interesting triggers that guided the redefinition
of the experiment plan, demonstrating their effectiveness in decision-making.

1.4 DOCUMENT STRUCTURE

The remaining chapters of this master’s thesis are organized as follows: Chap-
ter 2 details the concepts involved in the development of the proposed approach. In
chapter 3, it presents the Systematic Literature Review (SLR) regarding the compu-
tational methods used in the prediction and definition of stamping parameters. The
proposed model for solving the problem is detailed in Chapter 4. Chapter 5 presents
how the case studies were conducted, their results, and the analyses performed. Fi-
nally, in Chapter 6, the conclusions obtained and the possibilities for future work are
presented.
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2 BACKGROUND

This chapter provides the necessary metallurgical and computational back-
ground to ground the present study, especially concerning the use of data-based meth-
ods for parameter suggestion design and automotive stamping domains.

2.1 AUTOMOTIVE MECHANICAL FORMING PROCESS AND PROPERTIES

It is believed that the first stamping processes were carried out in the manu-
facture of coins many years ago, a process based on the use of the weight of a tool
(in this case, a hammer) on a mold. This method of hammering to generate shape has
been used for many years.

With the global evolution, a growing demand for more elaborate solutions emerged,
and with that, the stamping process needed to undergo improvements, mainly in terms
of quality and productivity.

The automotive mechanical forming process is a fundamental process for the
production of metallic parts. This process is used to convert flat sheet metal into spe-
cific shapes. Automotive mechanical forming can be accomplished in several ways,
including stamping, forging, and rolling (HOSFORD; CADDELL, 2011).

In addition to the specific properties of each automobile mechanical forming
method, several general properties are important to guarantee the quality and dura-
bility of the produced parts, as well as evaluating the tools to describe these char-
acteristics. Among these properties are yield stress, tensile strength, and elongation
(BOLJANOVIC, 2004).

2.1.1 AUTOMOTIVE MECHANICAL FORMING PROCESS

The manufacturing process of automotive parts is composed of several stages,
including design, cutting, stamping, modeling, and others. This work focuses on the
stamping process using the deep drawing technique and the intrinsic conformations of
the process.

2.1.1.1 MATERIAL PROPERTIES AND OPERATING CONDITIONS

Metal stamping is considered one of the essential processes in the produc-
tion process of automotive parts, as its quality directly impacts the final product. The
success of this process strongly depends on the material properties and operating
conditions.
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Knowledge of the mechanical properties of materials, such as yield strength,
tensile strength, and elongation, is essential to determine the material’s ability to de-
form without breaking during the stamping process (KIM; PARK, 2002) (MA; HUANG
et al., 2014).

In addition to material properties, operational conditions influence metal stamp-
ing, some of which stand out: Temperature, tooling configuration, stamping speed, lu-
brication, and dimensional tolerances. Among several conditions, these are some of
the main ones that must be controlled (PARK; KIM, 1995).

Finally, it is essential to highlight that the optimization of the metal stamping
process is a complex process with several challenges, as it involves the selection of
several parameters and seeks to find a balance between antagonistic features, such
as lightness and resistance of the part.

2.1.1.2 STAMPING PROCESS AND TOOLING

There are three main types of metal stamping techniques: progressive, four-
blade, and deep draw.

The method is called "deep draw" when the depth of the stamped part exceeds
its diameter. This type of forming is ideal for creating components that require differ-
ent series of diameters and generating metal parts with complex and detailed shapes.
Figure 1 shows a schematic of this conventional process. This type of forming is ideal
for creating components that require significant variations in diameter and for produc-
ing metal parts with complex and detailed shapes. In short, the process begins with
the creation of a die and the tools used in the press, including the punch and a set
of cavities that define the final shape of the part. Next, the raw material is adequately
lubricated and inserted between the punch and the die in the press, where it is sub-
jected to a compression force that shapes it, pressing the material against the molds
and resulting in a part with the desired shape. Stamping can be carried out cold or hot,
and the choice of method depends on the composition of the metal and the complexity
of the part (BOLJANOVIC, 2004).

2.1.2 STEEL PROPERTIES

There are many types of steel properties, such as electrical (ability to con-
duct), magnetic (ability of a material to be attracted or become a magnet), chemical
(molecular structure of the material), and thermal (ability to conduct or dissipate heat).
In this context, the following subsections will focus on a brief discussion of the three
fundamental mechanical properties: yield strength, tensile strength, and elongation.
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Figure 1 – Schematic presentation of the conventional deep drawing process. Source:(GÜRÜN;
KARAAĞAÇ, 2015).

2.1.2.1 YIELD STRENGTH

Yield strength is a mechanical property of metals that is directly related to their
ability to resist plastic deformation.

Yield strength is defined as the amount of stress a material can withstand
before it begins to permanently deform. In other words, it is the amount of force acting
on the cross-sectional area of the material to a point where it can no longer return to
its original shape, as illustrated in Figure 2 (SGROTT, 2022).

Figure 2 – Schematic presentation of the conventional deep drawing process. Source: (SGROTT, 2022).

Materials with a high yield strength are more difficult to deform. Consequently,
more robust equipment is needed to enable the stamping process to be carried out.
On the other hand, materials with low yield strength are easier to deform, inherent to
the formation of wrinkles in the stamped part.
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Figure 3 presents a comparison of different materials with their respective de-
formations when a known stress is applied to the material. In the illustration, it is pos-
sible to observe the behavior of materials with high (DP980) and low yield strength
(DQSK). The DP980 material can withstand very high tension (approximately 1000
MPa). However, its tensile capacity is minimal, and fracture occurs quickly after reach-
ing maximum deformation stress (next to 10%). On the other hand, the DQSK material
can be highly tensile (next to 45%) and has a low resistance to applied tension (ap-
proximately 200 MPa).

Figure 3 – Typical stress x strain curve for different steel’s. Source: (LIM et al., 2012).

2.1.2.2 TENSILE RESISTANCE

Tensile strength is defined as the maximum tensile load that a material can
withstand, that is, the maximum of the deformation stress as shown in Figure 2 indi-
cated by curve (ultimate tensile strength).

Generally, high-strength steels have a higher tensile strength, as illustrated by
the example of DP980 steel (Figure 3). On the other hand, milder or lower-strength
steels, such as DQSK and AKDQ (Figure 3), have lower tensile strength. High-strength
steels are commonly used in applications that require high tensile strength, such as
structural parts that need to withstand heavy loads. Low-strength steels, on the other
hand, are often used in applications where structural strength is not the main criterion,
such as aesthetic components, where other factors are decisive for material selection
(BOLJANOVIC, 2004).
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2.1.2.3 ELONGATION

Elongation is a measure of the ability of a material to plastically deform before
breaking when subjected to tensile stress. Such a measure is obtained after destruc-
tive tests carried out in the laboratory, where after the part fractures, it is possible to
calculate the percentage of elongation obtained according to Equation 2.1. Therefore,
elongation is an important property to evaluate the ductility and formability of the ma-
terial (BOLJANOVIC, 2004).

𝑒𝑓 = 𝐿𝑓 − 𝐿𝑎

𝐿𝑎
(2.1)

Where 𝐿𝑓 is the fracture length and 𝐿𝑎 is the original gauge length.

Tensile strength was the subject of study by (LIM et al., 2012), in which he
observed that high-strength steels demonstrate a greater capacity for tensile strength.
This is exemplified by DP980 steel, as illustrated in Figure 3. In contrast, softer or low-
strength steels, such as DQSK and AKDQ (Figure 3), exhibit lower tensile strength.

2.1.2.4 CONFORMATION LIMIT CURVE (CLC)

The Forming Limit Curve (CLC) is a tool used to describe the relationship be-
tween stress and strain during the steel forming process, whose typical appearance is
shown in Figure 4. Provides essential information about the level and type of deforma-
tion that a material can withstand when subjected to forming stresses. CLC has been
widely used in the comparative evaluation of materials and the prediction of failures in
automotive parts, as applied by Tepedino in (TEPEDINO, 2014), which aims to predict
rupture at the edges of stamped parts in the automotive industry.

The Forming Limit Curve (CLC) can be used to identify areas of WRI, IS, and
FRA during the steel forming process. This information helps in the early assessment
of the quality and integrity of the parts produced. Furthermore, they can be used in
a complementary way in applications aimed at optimizing the stamping process, as
demonstrated in the methodology used in this study.

2.2 DATA MODELING

With technological advances in recent years, access to an ever-increasing
amount of data has become possible, driven by the development of more powerful
hardware and advanced signal processing tools. As pointed out by a study (SCHON-
FELD, 2010), the amount of data generated will continue to increase in the coming
years, opening up countless opportunities. These opportunities stand out, particularly
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Figure 4 – Conformation Limit Curve - CLC. Source: (TEPEDINO, 2014)

in applications that make use of sophisticated signal processing tools, which can effi-
ciently extract information that would be practically inaccessible by manual means.

In particular, data modeling tools have gained prominence and are widely
adopted in areas that deal with massive and complex data sets. This is due to its ability
to discover statistical patterns in data and use these patterns to make predictions or
make informed decisions (AL-JARRAH et al., 2015).

These data modeling tools have proven to be indispensable for dealing with the
vast amount of information currently available. They allow you to extract valuable in-
sights, identify correlations and trends, and assist in making informed decisions across
a wide variety of industries (BONACCORSO, 2017).

As technologies continue to evolve, data modeling tools are expected to be-
come even more sophisticated and efficient, allowing us to explore the potential of data
further and drive innovation in many areas.

In the context of data modeling through ML, two main types stand out: super-
vised and unsupervised. The fundamental distinction between them lies in the pres-
ence or absence of a reference during training, that is, labels that associate the inputs
with the desired outputs. While in supervised learning, there is this explicit guidance,
in unsupervised learning, the training aims to identify patterns autonomously without
relying on predefined labels.
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2.2.1 SUPERVISED LEARNING

Supervised learning is a modeling methodology that consists of training a
model from labeled examples, where each example consists of a set of attributes (in-
put data) and a known response (labels). The objective is to learn a function capable
of mapping the attributes to the correct answers, thus allowing to make predictions on
new data not previously seen. With an adequate training stage, the model is adjusted
to the patterns present in the training data. They allow the model to make accurate
predictions for unlabeled data in the inference phase due to the parameters and cal-
culations adjusted during training. The model learns to generalize the relationships
between attributes and labels, allowing it to make accurate estimates even on new
data (MAHESH, 2020).

Figure 5 demonstrates the steps in a summarized form of a supervised learning
algorithm, where, initially, the collection, cleaning, and pre-processing of the data is
carried out. Once the data are prepared, the selection of an appropriate modeling
technique can be defined, considering the type of problem and the specific objectives.
At this stage, model parameters are tuned to optimize its performance. It is essential to
strike a balance between model complexity and generalizability. Finally, the evaluation
of the obtained results is carried out to infer the performance of the model. By using
clean and representative data and building a robust model, good performance can be
achieved (BONACCORSO, 2017).

Figure 5 – Illustration of the supervised learning process for training and inference stage. Source: Own
authorship

The modeling of multi-objective problems involves several approaches. Among
them, some intrinsic characteristics of decision tree algorithms stand out in this context,
such as speed in training and greater interpretability of the results obtained. In the
following topics, some of these algorithms will be discussed in detail.
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2.2.2 DECISION TREE

Decision tree algorithms are ML techniques used to solve classification and
regression problems. These algorithms create a tree-like structure to represent a set
of decisions. The decision tree is divided into root nodes and child nodes, where, at
each step, the algorithm selects the attribute that best divides the data based on com-
monly used criteria, information gain, Gini index, or entropy. Based on the selected split
attribute, child nodes are created, where, the data is split into smaller subsets. Each
subset corresponds to a specific value of the split attribute. This process is repeated
until a stopping criterion is met. This criterion can be a tree depth limit, minimum num-
ber of samples in a node, or any other user-defined criteria (BONACCORSO, 2017).

There are also variants of decision tree algorithms, such as Random Forest
and Extra Tree, which use multiple trees to obtain more robust results and improve
performance, in addition to randomness factors that help to define a more robust model.

2.2.2.1 RANDOM FOREST AND EXTRATREE REGRESSOR

Random Forest (RF) is a ML algorithm based on the Decision Tree technique.
It can be used for both classification and regression problems, being able to deal with
categorical and continuous predictor variables. This algorithm has several attractive
features that make it a popular implementation choice (CUTLER; CUTLER; STEVENS,
2012).

One of the main advantages of RF is its ability to perform multiclass classifi-
cation efficiently. Furthermore, it stands out for its speed in both the training and the
prediction phase, making it a practical choice in several applications mainly involving
industrial applications (BREIMAN, 2001).

Additionally, the RF demonstrates competence in dealing with high-dimensional
problems in which there are a large number of predictor variables. It is capable of
automatically selecting the most relevant variables, making it an attractive option for
addressing complex challenges that involve an extensive set of attributes.

Figure 6 presents a general representation of the RF, an algorithm that com-
bines several decision trees to make a final decision. At the beginning, the root node
of the tree encompasses all predictor data. Nodes that are not split are called terminal
nodes, forming the final partitions of the predictor space. Each non-terminal node splits
into two child nodes, one on the left and one on the right, based on the value of one
of the predictor variables. In the case of a continuous predictor variable, the division is
determined by a cutoff point. Data whose predictor value is less than the cutoff point
are directed to the left node, while the rest are directed to the correct node.

In addition to creating several trees, the algorithm uses random selection to
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perform node divisions. This process makes the Random Forest more robust against
noise when compared to traditional decisions.

Figure 6 – Illustration of random forest trees. Source: Own authorship.

During the prediction step, individual trees vote on their predictions, and the
most frequent class or value is selected as the final prediction. This is called a pre-
diction combination. These randomization and prediction combination strategies make
RF a powerful and effective algorithm for dealing with ML problems, offering greater
accuracy and addressing the adverse effects of overfitting.

The Extra Tree (ET) algorithm is also based on decision trees and is considered
a variation of the RF algorithm. Although both algorithms follow a similar approach,
there are essential differences between them. The main difference between ET and
RF algorithms is in the construction of the individual trees. In RF, each tree is built from
a random sample of the training data (with replacement) and takes into account a ran-
dom selection of features for each node split. In ET, trees are built using the complete
training set and a random selection of attributes for each node split (GEURTS; ERNST;
WEHENKEL, 2006).
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This difference implies that ET tends to be even more random than RF. For
example, in RF, each tree is built from a random sample, but the algorithm still evaluates
several options to select the best split at each node. In ET, as all trees are built using
the entire training set, there is no such additional evaluation of splitting options. This
makes ET faster in training but may result in a slight loss in accuracy compared to RF.
However, when properly tuned, ET can provide a better characterization of the problem
at hand (GEURTS; ERNST; WEHENKEL, 2006).

2.3 MULTI-OBJECTIVE OPTIMIZATION

Optimization is a process that aims to find one or more feasible solutions that
correspond to the extreme values of one or more objectives. It is performed by com-
paring different available solutions until no better solution can be found.

In single-objective optimization problems, the task is to find a solution that min-
imizes or maximizes a single function. However, when more than one conflicting ob-
jective is being optimized, we deal with a multi-objective optimization problem. In this
case, there are negotiated criteria in decision-making and several objective functions
being optimized simultaneously, and such objectives tend to be conflicting.

Multi-objective optimization seeks to find a set of non-dominated solutions, that
is, solutions that cannot be improved on all objectives simultaneously. Instead of looking
for a single optimal solution, the objective is to provide a set of solutions that enable
the decision maker to choose the solution that best meets their needs (DEB, 2011).

In recent years, genetic algorithms have been widely used in solving multi-
objective optimization problems due to their high capacity to deal with complex prob-
lems. These problems are often encountered in our everyday lives, making genetic
algorithms a valuable tool for finding efficient and effective solutions (AMOUZGAR,
2012).

What makes genetic algorithms so attractive is their ability to search for high-
quality solutions in a multidimensional search space. They use selection, recombina-
tion, and mutation techniques to generate and improve a population of decisive solu-
tions over several generations. This approach mimics the process of natural evolution,
where only the most adapted solutions survive and reproduce, producing correspond-
ingly better solutions over time (RIBEIRO, 2016).

2.3.1 PARETO OPTIMALITY

In the context of multi-objective optimization, it is important to understand the
concept of domination to identify optimal solutions. Domination is a partial ordering
relation between two solutions (DEB, 2011).
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A solution is considered dominant over another solution if two conditions are
met:

• The solution x1 is not worse than x2 in all considered objectives.

• Solution x1 is strictly better than x2 in at least one objective.

Domination allows you to identify solutions that offer different tradeoffs between
objectives. The non-dominated solutions form the so-called Pareto front, which repre-
sents the best solutions in terms of options among the considered criteria. Each point
on the Pareto front corresponds to a solution that cannot be improved on one criterion
without getting worse on another criterion.

By exploring the Pareto front, decision-makers can analyze the different op-
tions available and choose the solution that best suits their preferences and constraints.
This allows you to make informed decisions, considering trade-offs between objectives
and selecting the solution that best fits the specific needs of the problem at hand.

Figure 7a illustrates the pairwise comparison between a set of solutions, using
the aforementioned definition to determine whether one point dominates another. In
this way, it is possible to establish which points are dominated and which are not. In the
example shown in the figure, points 3, 5, and 6 are identified as non-dominated points.

Figure 7b illustrates the resulting Pareto front for the set of six solutions. This
Pareto front represents the best non-dominated solutions, where each point repre-
sents a compromise between the different objectives considered. By exploring this
front, decision-makers can analyze the available options and choose the solution that
best fits their specific preferences and constraints.

Figure 7 – Illustration of a set of points with their Pareto front. Source: (DEB, 2011).
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2.3.2 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms (EAs) are inspired by the biological model of evolution
and natural selection, allowing to simulate an environment and the biological pressures
under which potential solutions can evolve. Through adaptation and survival over sev-
eral generations, solution candidates can be optimized towards an approximate solu-
tion, shaped according to the specific parameters and constraints of the problem at
hand (BINITHA; SATHYA et al., 2012).

In many real-world problems, it is necessary to simultaneously optimize multi-
ple objectives, which can sometimes be conflicting. When the complexity of the prob-
lem increases considerably or when it is difficult to formalize it precisely, the search for
an exact solution can become computationally expensive or even unfeasible (VIKHAR,
2016). In those scenarios, where an approximate solution is sufficient, multi-objective
Evolutionary Algorithms (MOEAs) can be effective in obtaining reasonable solutions.

There are several variations of EAs, but Genetic Algorithms (GA) stand out
due to their efficiency in solving problems with an ample search space and little prior
knowledge, especially when analytical equations are not readily available to address
the problem. Therefore, a more detailed description of the basic GA procedure and
operators will be provided, along with an explanation of NSGA-II, which demonstrates
skills in handling multi-objective problems.

2.3.2.1 NONDOMINATED SORTING GENETIC ALGORITHM II (NSGA-II)

In applications of multi-objective Evolutionary Algorithms (MOEAs), NSGAII
stands out for its solid performance when compared to other algorithms in the same
category. Studies carried out by authors such as (RAHIMI et al., 2023) and (ISHIBUCHI
et al., 2016) provide comprehensive analyses of the relative capabilities of these algo-
rithms.

One of the main features of NSGA-II is that it follows the general scheme of a
genetic algorithm but with modifications for mating selection and survival. The first step
of the algorithm is to perform the selection concerning the non-dominated fronts. During
this process, there may be a need to divide a front, as not all individuals can survive.
In this division of fronts, solutions are selected based on the cluster distance (DEB et
al., 2002).

The crowding distance is calculated using the Manhattan Distance in objective
space. However, it is desirable to maintain the extreme points in each generation. The
algorithm implements an elitist selection strategy, in which the best chromosomes from
the current generation are preserved and passed on to the next generation. This ap-
proach guarantees that the quality of the best solution found increases progressively
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over time (DEB et al., 2002).

By keeping the best chromosomes, the algorithm benefits from the valuable
information contained in these high-performance solutions. These chromosomes are
considered the fittest and represent high-quality solutions in the search space. By pre-
serving them, the algorithm prevents the loss of these promising solutions, ensuring
that they have the opportunity to influence and improve the quality of subsequent gen-
erations (DEB et al., 2002).

These changes to NSGA-II aim to improve the convergence and diversity of
solutions across generations. By using a selection based on non-dominated fronts
and cluster distances, the algorithm promotes the maintenance of solutions and the
preservation of diversity in populations. Tournament selection also intensifies selective
pressure, favoring more promising solutions in each generation.

2.3.3 SURROGATE MODEL OPTIMIZATION

A surrogate model, also known as an emulator model or approximation model,
is a technique widely used in data analysis and process optimization. These models
aim to represent complex systems or processes, allowing the prediction of the system’s
behavior under different conditions or the optimization of the process without the need
to resort to the natural system repeatedly (QUEIPO et al., 2005).

Building a surrogate model involves using statistical or ML techniques to create
a behavioral approximation of the system. This is especially useful when the system in
question is complex to measure or calculate directly or your process is complicated to
reproduce due to time constraints.

Surrogate models are also applicable to multi-objective problems, in which op-
timization seeks to find a set of solutions that uniformly meet the requirements of all ob-
jectives. There are several approaches to building surrogate models for multi-objective
problems, such as the one used in the work (DASARI; CHEDDAD; ANDERSSON,
2019), which used models based on regression trees to approximate the actual model.
These types of models offer several benefits, such as reducing the time and costs re-
quired to perform experiments, ease of modeling, the ability to perform experiments
under different conditions, and the ability to analyze and optimize without affecting the
natural system.

The selection of evaluation methods for a substitute model must be guided by
the particularities of the problem under analysis, taking into account its specific nature.
These methods can be applied independently or combined to provide a comprehen-
sive assessment of the model from several aspects. The effectiveness of a surrogate
model is intrinsically linked to its ability to predict the behavior of the original system
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accurately.

2.3.4 OPTIMIZATION METRICS

Evaluating the quality of a Pareto front approximation is a complex challenge
due to several factors, such as proximity to the actual Pareto front and adequate cov-
erage in the objective space. Given these complexities, several metrics, known as per-
formance indicators, have been developed to measure the quality of a Pareto front
approximation. These metrics assign a score based on different evaluation criteria (LI;
YAO, ).

The Pareto front approximation aims to find a set of non-dominated solutions
that represent a balance between the objectives of the problem. Assessing the quality
of this approximation involves determining how close it is to the true Pareto frontier and
how adequately it covers the objective space.

The evaluation metrics mainly consider two aspects: convergence and diver-
sity. Convergence refers to how close the approximation is to the true Pareto frontier,
evaluating the distance between the found solutions and the known optimal solutions.
Diversity evaluates the distribution of solutions along the approximate boundary, ensur-
ing comprehensive coverage of the objective space.

The proper evaluation of these metrics allows a clear understanding of the
performance of the algorithm in relation to the optimization objectives, helping in the
selection and adjustment of parameters of the genetic algorithm.

In the following topics, details of the metrics used in this work will be presented
to help understanding the effectiveness of GA in finding optimal or approximate solu-
tions for a given problem.

2.3.4.1 HYPERVOLUME INDICATOR

The hypervolume (HV) metric is a widely used metric to evaluate the quality of
Pareto front approximations in multi-objective problems. It provides a quantitative mea-
sure of the extent of coverage of the objective space by a given approximate solution,
as illustrated in Figure 8.

The idea behind the HV calculation is that a good approximation of the Pareto
front should encompass a region of objective space with a significant volume. The
larger the HV, the better the approximation quality.

The HV indicator is a metric used to measure the quality of a Pareto front ap-
proximation in multi-objective problems. It represents the volume of the objective space
that is dominated by the approximate solution of the Pareto front S, and is delimited su-
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Figure 8 – Example of a graphical HV calculation. Source: (FONSECA; PAQUETE; LÓPEZ-IBÁNEZ,
2006).

periorly by a reference point r ∈ R𝑚, where for all z ∈ S, z ≺ r. The calculation of the
HV is performed through Equation 2.2.

𝐻𝑉 (𝑆, 𝑟) = 𝜆𝑚(
⋃︁
𝑧∈𝑆

[𝑧; 𝑟]) (2.2)

The HV calculation used in this work is based on variant three of the algorithm
proposed by (FONSECA; PAQUETE; LÓPEZ-IBÁNEZ, 2006).

2.3.4.2 GENOTYPIC DIVERSITY MEASURE

The Genotypic Diversity Measure (GDM) is a metric used to assess the genetic
diversity of a GA population. This metric is applied specifically at the level of genotypes
of individuals in the population.

Genotypic diversity is an important measure to assess the exploration and
search capacity of the GA. The more genotypic diversity is in the population, the greater
the variety of solutions represented, which can lead to a broader exploration of the
search space.

This metric is often used to monitor genotypic diversity across GA generations.
A decline in genotypic diversity over time may indicate premature convergence of the
algorithm, where the population is restricted to a specific region of the search space, re-
sulting in suboptimal solutions. On the other hand, a high genotypic diversity indicates
a broader exploration of the search space and a greater chance of finding optimal or
close to optimal solutions.

In this work, the normalized pairwise diversity measurement (DNPW), which
is widely discussed in the literature and different codifications, will be adopted due to
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its remarkable capabilities regarding convergence, stability, and insensitivity to dimen-
sion and outliers. This measure, described by Equation 2.3, is effective in a variety of
contexts, making it a solid choice for this study (CORRIVEAU et al., 2012).

𝐷𝑁
𝑃 𝑊 =

2
𝑃 𝑂𝑃𝑠𝑖𝑧𝑒(𝑃 𝑂𝑃𝑠𝑖𝑧𝑒−1)

∑︀𝑃 𝑂𝑃𝑠𝑖𝑧𝑒
𝑖=2

∑︀𝑖−1
𝑗=1

√︁∑︀𝑃 𝑂𝑃𝑠𝑖𝑧𝑒
𝑘=1 (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)2

𝑁𝑀𝐷𝐹
(2.3)

where POPSIZE is the population size, i and j are individuals, k is the gene
locus and NMDF is a normalization factor.
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3 SYSTEMATIC LITERATURE REVIEW

The use of data-driven models to predict the best process parameters and
stamping of metal materials is not new. However, there is a paucity of documentation
available on the topic. Surprisingly, there is no comprehensive systematic literature
review (SLR) that addresses this issue. This gap can be attributed to several possible
reasons, such as the lack of a general perception of the need to systematically organize
the existing body of knowledge or the difficulties encountered in solving this challenging
multi-objective problem.

Thus, a systematic review of the literature was carried out until November 2023
to address the project of predicting and optimizing the automotive stamping process
using machine learning techniques and multi-objective evolutionary algorithms.

3.1 RESEARCH METHODOLOGY

With the main objective of offering a comprehensive view of the subject and
identifying its characteristics and trends, the defined research objective is the following:

• Investigate data-driven techniques used to optimize the automotive stamping pro-
cess or suggest the best process parameters and materials to employ.

The following questions to assist in the understanding and synthesis of the
research objective:

1. What are the most used techniques?

2. How is data-driven modeling relevant compared to empirical analytical models?

3. Difficulties related to the stamping process?

3.2 PLANNING THE REVIEW

With the proposed research objective and the elaborated questions, the SLR
planning stage began using the Prisma methology (LIBERATI et al., 2009), in which
the search phrase was established. The search phrase was used in the abstract and
title search fields, whenever these options were available.

After several iterations, it was decided to use five different keywords, to require
only seven logical operators to compose the search phrase, making it compatible with
all selected Academic Search Engines (ASE). The search phrase was entered into the
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abstract and title search fields when these options were available. Finally, the search
phase was defined as follows:

With the proposed research objective and the questions elaborated, the RSL
planning stage began using the Prisma methodology, in which the search phrase was
established. The search phrase was used in the abstract and title search fields when-
ever these options were available.

• (“Automotive Stamping” OR "Metal Stamping“ OR "Steel Stamping") AND (“Opti-
mization” OR "Improvement*")

Considering the multidisciplinary nature of the topic, it was decided to select
the areas of Engineering, Materials Science, and Computer Science as the main focus
of this research. The chosen search engines are IEEXplore, Science Direct, Web of
Science, and Scopus.

3.3 THE REVIEW PROCESS

After defining the search engines and search phrase, the next step in conduct-
ing a systematic research review is to outline the objective, inclusion, and exclusion
criteria used as a practical screen to decide which studies should be considered for the
review. The defined criteria are presented below:

• Objective criteria:

– Year range: 2010 - 2023

– Type of document: Articles, dissertation, and thesis

– English language

• Inclusion criteria:

– Include studies that apply metaheuristics to optimize the steel stamping pro-
cess

– Include studies that apply methods or tools to suggest process parameters
or materials used for stamping steel

• Exclusion criteria:

– Remove studies that predict or optimize only factory processes

– Remove studies that predict properties or optimize non-metallic materials
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– Remove studies that aim to present only the influence of parameters in the
stamping process

Based on the established criteria, it was defined that, if a study meets any ex-
clusion criteria or does not meet any objective criteria, it should be excluded from the
subsequent steps of the systematic review. The criteria were applied in the following
order: objective, exclusion and inclusion. After practical screening and quality assess-
ment, the selected articles were counted and presented in Table 1. The "Found" col-
umn represents the number of articles returned by the search phrase alone. "Filtered"
indicates the number of articles after applying the objective, inclusion and exclusion
criteria. Finally, "Selected" shows the number of articles that were chosen for further
study.

Table 1 – Table of references or articles, filtered and selected from the search SLR.

ASE Found Filtered Selected

IEEEXplore 13 4 2
Science Direct 32 7 2
Web of Science 48 15 8
Scopus 72 15 2
Others 6 6 6

The information collected from the body of work to be tabulated is:

• Model input variables, classified into categories IN1, IN2 and IN3 defined as fol-
lows:

– IN1: Type of stamping

– IN2: Stamped part

– IN3: Process parameters or materials used

• Model output variables, that is, the properties being predicted or optimized:

– The tool used to optimize the process (statistics, machine learning, numeri-
cal simulation, among others)

– Presence of quantitative analysis of results

– Presence of qualitative analysis of results

3.4 SUMMARY AND DISCUSSIONS

Based on the selected studies, a matrix concept was elaborated, which is pre-
sented in Table 2. This table includes relevant information, such as the modeling and
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optimization techniques used, the input and output variables considered, and the anal-
ysis of the results obtained, whether quantitative or qualitative.
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6
Table 2 – Table with a fraction of studies selected from the SLR.

Reference IN1 IN2 IN3 Output Simulator Algorithms Optimizer Quant. Quali.

(YAN et al., 2020) X X X WRI, FRA DYNAFORM ANN AG X
(OUJEBBOUR; HABBAL; ELLAIA, 2013) X X X WRI, FRA LS-DYNA SA, SPSA, NBI, NNCM NSGAII
(WANG et al., 2018) X X X WRI, IS, FRA LS-DYNA RBF, KRG, SVM NSGAII X X
(INGARAO; Di Lorenzo, 2010) X X X WRI, IS, FRA DOE + LS-DYNA RSM X
(INGARAO; LORENZO, 2010) X X X WRI, IS, FRA DOE + LS-DYNA RSM X
(KIM; KIM; LEE, 2023) X X X WRI, IS, FRA DOE + Altair Hyperform RSM X
(HAMDAOUI et al., 2015) X X WRI, IS, FRA LS-DYNA KRG NSGAII X
(DANG; LAFON; LABERGERE, 2017) X X X WRI, IS DOE + LS-DYNA RBF
(XIE, 2011) X X WRI, FRA DOE + LS-DYNA KRG X X
(SU et al., 2017) X X X WRI, FRA LS-DYNA X
(XIE, 2011) X X X FRA DOE + LS-DYNA KRG X X
(BHUYAN et al., 2015) X X X FRA DOE + LS-DYNA X
(ESENER; ERCAN; FIRAT, 2014) X X X WRI, IS, FRA DOE + DYNAFORM + CATIA X
(HU et al., 2018) X X X WRI, FRA AutoForm X
(MA; HUANG et al., 2014) X X X WRI, FRA DOE + Dynaform X
(RAFIZADEH et al., 2017) X X X WRI DOE + ABAQUS RSM, RNA X X
(SINGH; GUPTA, 2010) X X X WRI LS-DYNA SVR, RNA X
(CUI et al., 2020) X X X FRA UG Software RSM NSGAII X X
(XIE et al., 2022) X X X WRI Autoform RNA AG X X
Present work X X X WRI, IS, FRA Autoform ET NSGAII X X
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3.4.1 DIVERSITY VARIABLES

As shown in Table 2, there is a predominance of research that employs stamp-
ing parameters and includes additional information about the part or process. Although
most of the studies focus mainly on process and material-related variations, other in-
formation such as type of stamping, type of automotive part, and study materials are
provided to enrich the understanding of the elements involved in the research, as in
the works (YAN et al., 2020), (ESENER; ERCAN; FIRAT, 2014) and (BHUYAN et al.,
2015).

Concerning input variables, which encompass both process factors and those
related to materials, their configuration varies according to the specific focus of the
study and the type of part to be stamped. This is due to the unique characteristics and
varied purposes of each automotive component, which are adjusted according to their
particular application. Therefore, it is crucial to consider that there are more secure
configurations for each application context.

Furthermore, the objective of the research can vary significantly. In some cases,
such as the study (OUJEBBOUR; HABBAL; ELLAIA, 2013), the emphasis is on identi-
fying the ideal domains for each process variable. These domains will serve as a basis
for the adequate definition of manufacturing parameters and the construction of the
components involved in the stamping process, thus allowing the analysis of the impact
of manufacturing parameters on the roof of a vehicle.

On the other hand, in research such as that carried out by Wang et al. in
(WANG et al., 2018), which aims to define material-related parameters, the main focus
lies on choosing the appropriate domains to guide the selection of the ideal material
for the specific part in question. In this context, the study focuses on determining the
ideal ranges for both process variables and materials. These ranges serve as a basis
not only for the optimization of manufacturing processes but also for the selection of
the material that will contribute to the creation of a failure-free part with high rigidity,
especially in collision situations.

It is important to highlight the significant diversity in the approaches and re-
strictions adopted in each study, since they may have different objectives, consequently
resulting in different definitions of inputs and sets of objectives to be achieved.

3.4.2 OPTIMIZATION MODELS

In the literature analysis, several models were identified that vary in complexity
and approach, three of which stand out. The first follows a relatively simple approach,
as evidenced in the studies by (SU et al., 2017) and (HU et al., 2018), where Design of
Experiments (DOE) methods are used combined with numerical simulation software.
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However, these methods often result in limited optimizations in the selection of the best
stamping parameters due to the restrictions imposed by the need to evaluate a large
number of possibilities empirically.

The second approach involves integrating the Response Surface Methodology
(RSM) or applying the Kriging algorithm (KRG) to the Designed Experiments (DOE)
model run in numerical simulation software. This methodology is widely adopted in
studies related to the research topic, such as (INGARAO; Di Lorenzo, 2010), (KIM;
KIM; LEE, 2023), and (XIE, 2011).

In the case of RSM, it focuses on analyzing the interactions between input
variables derived from DOE in simulation software, aiming to find the ideal combination
of parameters to optimize a specific objective function.

In the context of the KRG algorithm, the emphasis is on the interpolation of
sample data (DOE) provided by the simulator, taking advantage of a technique that
models the spatial correlation between sample points, aiming to estimate values in
non-simulated locations based only on the information collected.

However, it is essential to highlight that adopting this approach (whether using
RSM or KRG) results in more substantial margins of error in predicting ideal stamping
parameters due to limited data availability and the restrictions inherent to the tool used.
Despite of theses challenges, this methodology continues to be widely used in several
studies, many of which present notable and significant results.

Finally, we identified a more advanced third approach, inspired by the work
of author Maomao Cui, with the study (CUI et al., 2020). This methodology served
as the basis for the approach developed in this study. The strategy adopted includes
the combination of finite element simulation with the RSM algorithms and the NSGA-II
multi-objective genetic algorithm to explore the optimal stamping parameters.

In summary, three distinct approaches were identified, and the most complex
approach stood out for its capacity and efficiency in optimizing ideal stamping parame-
ters. However, it is essential to highlight that each project has its limitations that deserve
consideration, whether due to the availability of tools, such as the use of numerical sim-
ulators, or the intrinsic nature of the objectives of the proposed study.

3.4.3 QUANTITATIVE ANALYSIS

In applications involving black box models, it is common practice to use metrics
such as Mean Squared Error (MSE), Coefficient of Determination (R²), Mean Absolute
Error (MAE), and other performance measures. Although these metrics are primarily
valuable from a practical point of view during the development process, they alone
offer little contribution when it comes to explain or evaluate the performance of models
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in different contexts. However, many studies still choose to use them solely to validate
the performance of their models.

Some works, such as (HAMDAOUI et al., 2015), go further and explore the
relationship between input and output variables, deepening the understanding of the
experimental plan. This makes it possible to anticipate decisions even before creating
a representative model.

In applications involving genetic algorithms, it is expected to direct metrics to
evaluate two main objectives: convergence and diversity. The work (BHUYAN et al.,
2015) is one of the few that presents an approach to evaluating optimization conver-
gence across generations.

Notably, most studies focus on understanding the phenomena resulting from
metal-mechanical processes, with little emphasis on the quantitative analysis of the
algorithms used. This raises doubts about the interpretability on the part of the authors
concerning the tools used.

3.4.4 QUALITATIVE ANALYSIS

The evaluation of the results achieved in the optimization proposal, in compar-
ison with theoretical and practical bases, often involves qualitative analyses. In studies
focused on the topic of optimizing the stamping process, validation of the best pa-
rameters is usually conducted using a numerical simulator, in which the results are
compared and the prediction error is calculated.

In the work carried out by Giuseppe Ingarao (INGARAO; Di Lorenzo, 2010),
after the optimization process, the author examines the resulting Pareto front and
identifies the individuals that meet the desired validation criteria. It then proceeds to
re-execute the simulation process, allowing an assessment of the effectiveness and
accuracy of the proposed model.

In contrast, in the study (KIM; KIM; LEE, 2023), a different approach was used.
In addition to the numerical simulation steps, the author stamped a laboratory part for
a practical understanding of the results proposed by the models, comparing them with
results obtained in laboratory experiments.

Most of the selected works adopt a qualitative assessment, often using simu-
lation software and practical experimental principles to compare and evaluate results
in the area of metal-mechanical phenomena.
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3.4.5 CONSIDERATIONS OF THE SYSTEMATIC LITERATURE REVIEW

After an in-depth review of the literature, it becomes evident that modeling and
predicting parameters in the stamping process of materials for automotive parts is not
only possible but also highly promising. However, as the number of objectives to be op-
timized increases, such as WRI, IS, and FRA, the challenge naturally becomes more
complex, demanding increasingly sophisticated modeling approaches. Given that the
parameters and configurations of simulation and stamping machines are often empir-
ically determined and susceptible to errors and anomalies, a deep understanding of
metallurgical principles becomes essential to establish the limits of these models.

In this context, the development of tools that help optimize and accelerate the
process of defining stamping parameters has become a growing trend. This is mainly
due to the positive results that have been presented, demonstrating its effectiveness.

Among the studies researched, a common point in all of them is the wide adop-
tion of numerical simulation tools to generate synthetic data. This focus has been driven
mainly by the costs associated with acquiring accurate data. Although the time required
to carry out the simulations is considerable, it remains substantially less than the time
spent executing the natural process in a factory. This not only saves time but also opens
up ample opportunities for experimentation and refining the techniques used.

Among the techniques frequently used, Artificial Neural Networks (ANNs) and
Response Surface Methodologies (RSM) for modeling stand out, as well as Genetic
Algorithms for optimization. However, the particularities of different datasets can affect
the modeling process in different ways. Therefore, in the absence of a consolidated
data set as a reference, it becomes unfeasible to determine which algorithm repre-
sents the state of the art based solely on the performance of its metrics. Instead, the
state of the art should be defined based on robustness, meticulous evaluation, results
achieved, and compliance with relevant theoretical principles in the field of metallurgy.

Concerning quantitative assessments, there is a need for more approaches of
this type, which results in algorithmic models that often need to be improved in repre-
sentativeness. This, in turn, generates growing concern regarding the methodologies
used.

49



47

4 PROPOSED APPROACH

In this chapter, we will present the proposed model to improve the optimization
of the automotive stamping process. To promote well understanding, we illustrate the
steps in the flowchart as shown in Figure 9. In addition, each step will be described in
detail throughout this chapter.

Figure 9 – Flowchart of the proposed model. Source: Own authorship.

4.1 SELECTION OF PARAMETERS AND DOMAINS

The first step consists of defining the parameters and domain selection process
for designing the experiments in the AutoForm1 simulation software. This software is
responsible for modeling and simulating the behavior of automotive parts, generating
the necessary database for the entire process. This stage is carried out by a specialist
in metallurgy, who uses his skills to identify the critical variables in the stamping process
of the desired part. The precise definition of these variables has a direct impact on the
evaluation of the regression model. The expert ideally creates a plan with a series of
experiments that uniformly span the search space of process and product variables.

To facilitate this comprehensive configuration, the AutoForm-Sigma tool is used.
This tool aims to simplify the process of defining parameters and domains, creating a
set of simulation possibilities based on the specified limits and the number of simu-
lations requested. In addition to this, the tool allows the parallel execution of multiple
simulations, thus accelerating data generation.
1 AutoForm: <www.autoform.com>
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4.2 DATA PROCESSING AND DATA COLLECT

After defining the appropriate parameters and domains, the process of the sim-
ulations is carried out. This step is critical for the project, considering the time required
to carry out all the simulations. In steps 1 and 2 in the flowchart, as shown in Figure 9, it
is essential to find a balance between the execution time and the desired performance
of the model (Model Definition Step 5). Carrying out a large number of simulations
generates significant operational costs for the company, especially when the simulated
part is large, generating excessive execution time. In contrast, for the proposed model,
which is data-based, the amount of available data directly impacts all subsequent steps
(creation of the surrogate model and optimization using multi-objective evolutionary al-
gorithms).

It is essential to highlight that the balance in the number of planned simulations
will directly reflect on the subsequent stages of this project. Therefore, finding this
balance is considered one of the project’s challenges.

After completing the simulations planned in steps 1 and 2, it is necessary to
extract the generated data, due to the limitations of the AutoForm software in relation
to integration with other systems. In order to obtain data more efficiently, the AutoAF
software was developed. AutoAF is a program developed in Python language, designed
to carry out the automated export of simulation data.

AutoAF is software developed in Python language to meet the demands of
large volumes of data and numerous simulations, which require an excessively long
time for a specialist to perform the extraction manually. However, AutoAF significantly
reduces the time required for this task, providing greater efficiency and freeing the
specialist to focus on other analysis and interpretation activities of the data obtained.

By automating data extraction, AutoAF makes the process more agile, accu-
rate, and reliable, ensuring that all simulation results are correctly collected and usable
in subsequent stages of the project.

4.3 DATA PRE-PROCESSING

The data pre-processing process consists of two steps: area calculation and
exploratory data analysis. This step is necessary due to the nature of the data exported
from the AutoForm simulator, which consists of files containing the mesh resulting from
the simulation, that is, values of nodes and simulation elements. The following topics
describe in more detail the steps required to process this data and the expected result.
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4.3.1 AREA CALCULATION

The AutoForm software provides a simulation database, consisting of two files
for each simulation. These files contain information about the elements and their re-
spective nodes, represented by three-dimensional spatial coordinates, as illustrated in
Figure 10.

The nodes play the role of reference points in which the physical properties or
variables of the problem are calculated and stored, in this case, their three-dimensional
location demonstrates their spatial position referring to the base element. Depending
on the nature of the problem, the elements can have different shapes and sizes. In the
context of this simulation, they have associated attributes to allow the determination
of their location in the CLC, such as the minimum and maximum strain applied to the
element.

Figure 10 – Nodes and elements in a mesh. Source: Own authorship.

The flowchart shown in Figure 11 demonstrates the necessary steps to perform
the area calculation, in which the final objective is to determine the area percentage of
each objective (WRI, IS, and FRA).

The area calculation process starts with the organization of the elements,
where the nodes and strain limits of each element are found, linking the spatial location
to the base element.

The next step consists of calculating the area of each array element employing
a vector function, in which the output will be the total area of the element. This output
will be used in the following steps to determine the total area and the specific area of
each objective.

After determining the area of the element, it is verified if it meets the criteria
of one of the objectives, that is, if it meets the criteria of Equations 4.1, 4.2 and 4.3. If
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Figure 11 – Area calculation flowchart. Source: Own authorship.

one of the conditions is true, the area of the element is added to the total of the chosen
objective.

𝐹𝑤𝑟𝑖 = (𝜀2 < −0.00995) ∧ (𝜀1 > − tan(45 * Π
180 ) * 𝜀2) (4.1)

𝐹𝑖𝑠 = (𝜀2 ≥ − ln(1.01) ∧ (𝜀1 < (−𝜀2 − ln *(0.98)))∨

(𝜀1 < (−𝜀2 * − ln(0.98) ∧ − ln *𝜀1 > ((−𝜀2) * (1 + 𝑅𝑎𝑣

𝑅𝑎𝑣
)))

(4.2)

𝐹𝑓𝑟𝑎 = (𝜀1 > 𝐸𝑞.𝐿𝑖𝑛𝑒) (4.3)

where, 𝜀1 and 𝜀2 are the major and minor strain, 𝑅𝑎𝑣 is the average 𝑅 material
parameter, and 𝐸𝑞.𝐿𝑖𝑛𝑒 is the equation of the curve line conformation limit test (CLC).

The mentioned checks are performed for all simulation elements. Upon com-
pletion of the scan, the total area of the simulated part is summed, and then the area
percentage is calculated for each objective, based on the previously summed areas for
WRI, IS, and FRA.

4.3.2 EXPLORATORY DATA ANALYSIS

After structuring the database, an exploratory analysis is carried out, using
visualizations and correlation analyses of the variables using the Spearman (SPEAR-
MAN, 1961) statistical method, as shown in Figure 12. The objective is to use a visual
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and statistical tool to evaluate whether any of the parameters defined in the first stage
of the process presents a low correlation with the other variables (inputs and outputs).
If any of the parameters present a low correlation, the selection of parameters and do-
mains must be reevaluated, as this variable has little impact on the model results and
may even significantly impair the quality of the creation of the surrogate model.

Figure 12 – Exploratory analysis using data correlation visualization. Source: Own authorship.

This visualization aims to support the user’s decision-making about moving to
the next step (creation of the replacement model) or reevaluating the parameters and
domains, redoing the previous steps, including running new simulations.

To evaluate the visualization of the correlation analysis, which is represented
by a heat map, it is necessary to observe the intensity of the colors or values in the cells
corresponding to the combinations of the analyzed variables. The higher the value, the
greater the correlation between the variables. Furthermore, the sign that accompanies
the correlation value indicates the direction of that relationship. A direct or positive cor-
relation is indicated by a positive value or a lighter color, while an inverse or negative
correlation is indicated by a negative value or a darker color. It is important to em-
phasize that the direction of the correlation indicates whether the variables move in
the same direction (positive correlation) or opposite directions (negative correlation) as
their values change.

4.4 MODEL DEFINITION

This step consists of creating the surrogate model using ML tools, to represent
the behavior of the addressed problem. Because it is a multi-objective problem, given
the need to minimize different objectives in a balanced way, the use of two regressors
in this study was defined, both based on regression trees, namely, RF and ET. The use
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of Neural Networks ended up being discarded at the beginning of the project, based
on the results obtained in (BRENDEL, 2021) work.

Thus, one of the stages of this work is to evaluate the performance of the RF
and ET regressors. For this, the Root Mean Squared Error (RMSE) metric was used to
measure the performance of the models during the search for the best regressor.

The leave-one-out method is used to build the model, due to data quantity lim-
itations. Then, as an auxiliary tool, sensitivity analysis and the impact of input variables
are analyzed for the created model.

4.5 SEARCH FOR THE BEST OPTIONS AND SOLUTIONS DELIVERY

After creating a surrogate model that represents the problem in question, it is
inserted as a fitness function in the evolutionary algorithm NSGA-II, which will have the
challenge of finding the Pareto front, which will represent the set of optimal points or
non-dominated solutions in a given multi-objective scenario. Therefore, the objective
in this step is to find the input parameters that result in objectives with the lowest
percentage of failure, that is, minimized.

In addition to looking for the ideal parameters to optimize the main objectives,
experts often consider additional criteria, such as the availability of materials and tool-
ing. Therefore, a wide variability in the provided domains allows for a more comprehen-
sive assessment by experts. In this study, the genetic operators essential for optimiza-
tion, i.e., mutation and recombination, are not fixed during the execution of the NSGA-II
algorithm. Instead, these parameters are adjusted based on deterministic rules, follow-
ing a real-time control strategy. The definition of the rules is the user’s responsibility
and is established before the optimization process begins (ALETI; MOSER, 2011).

Although deterministic parameter controls are generally more straightforward
and more economically advantageous compared to more complex strategies, their
limitation in considering the specific behavior of the NSGA-II, the actual optimization
progress, and the information provided by the fitness function can lead to suboptimal
results in specific scenarios (PARPINELLI et al., 2019). Furthermore, predicting the
number of generations necessary for the convergence of an optimization problem is a
challenging task, which can affect the effectiveness of previously established determin-
istic rules.

In this study, an approach with a deterministic rule was used that adjusts the
mutation and recombination rate at each generation, following the Equations 4.4 and
4.5. Initially, the recombination rate starts at 0% and increases progressively, reaching
100% as generations advance. On the other hand, the mutation rate starts at 40%
and gradually decreases until it reaches 0%, where 𝑔𝑓 refers to the last generation.
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Figure 13 graphically illustrates the evolution curves of recombination and mutation
rate. This dynamic parameter tuning strategy is adopted to address the uncertainty
related to NSGA-II convergence, allowing for more accurate adaptation throughout the
optimization process.

𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = log10 𝑔

log10 𝑔𝑓

(4.4)

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = 0.4.

(︃
1 − log10 𝑔

log10 𝑔𝑓

)︃
(4.5)

Figure 13 – Evolution of recombination and mutation rate. Source: Own authorship.

To enable an evaluation of the evolutionary algorithm, the HV metric and paral-
lel coordinates are used, which allow the evaluation of the convergence of the algorithm
and visual analysis of the diversity of non-dominated solutions.

Finally, the final step presents the most relevant selected (non-dominated) re-
sults, including the machine parameters and the percentage of the predicted area for
each objective. To verify the accuracy of the proposed model, it is necessary to select
one of the generated solution vectors as output and parameterize a new experiment in
the AutoForm software with the characteristics of that solution vector. If the validation
is not satisfactory, the NSGA-II parameterization is revised and adjusted.
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5 RESULTS AND ANALYSIS

In this topic, the results of the proposed methodology are presented, which are
divided into two case studies. The first case study is related to a laboratory part called
"Cup", while the second covers a genuine car part called "Internal Tailgate".

The case study "Cup" concerns a laboratory solid whose shape is represented
in Figure 14. Its unique geometry gives it a wide versatility of applications in the field
of mechanical engineering, making it a frequently used element in studies related to
materials. The "Cup" plays a crucial role in validating and testing new developments,
being widely used in laboratory environments. This part is regularly used in material
resistance tests, including mechanical tests to evaluate physical properties, such as
tension, compression, and flexion, in samples composed of a variety of materials.

Figure 14 – Case Study 1 - Cup. Areas of wrinkling (WRI - highlighted in purple), under stretch (IS -
highlighted in grey), and fracture index (FRA - highlighted in red). Source: Own authorship

The second case study aims to analyze the automotive part called the "In-
ternal Tailgate", which is a fundamental component used in automobiles. This part is
positioned at the rear of the vehicle, more specifically in the area corresponding to the
trunk.

Figure 15 presents construction details of the internal tailgate, demonstrating
information about its structure and characteristics.

The structure of this chapter follows the following organization: Initially, the
experiment plan is presented, and then the results of each case study.

5.1 EXPERIMENTS PROTOCOL

The proposed approach was developed in two programming languages, Lab-
VIEW for the area calculation step (AutoAC software) and Python with the Sklearn
library1 and pymoo (BLANK; DEB, 2020) for model definition steps and search for the
1 Sklearn site: <https://scikit-learn.org/>
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Figure 15 – Internal Tailgate - Areas of wrinkling (highlighted in purple) and under stretch (highlighted in
grey). Source: Own authorship.

best solutions.

To create the replacement models, we use multivariate regressors, namely ET
and RF. Additionally, we apply hyperparameter tuning tools to optimize model perfor-
mance in each case study. The training was carried out by the leave-one-out (LOO)
cross-validation (CV) method, using the root mean squared error (RMSE) metric in a
sensitivity analysis set to evaluate the quality of the regression models.

In the "Cup" case study, the variables Coefficient of Friction (FRC), Swift Hock-
ett Sherby Combination Factor (SWI), Yield Stress (YS), Blank Support Force (BHF),
and NValue (NVA) were initially considered by the specialist. The table 3 presents the
domains and parameters used to generate the database by the AutoForm software.
Based on these parameters, it was possible to generate a database with 747 Auto-
Form simulations, with five inputs (FRC, SWI, YS, BHF, and NVA) and three outputs
(WRI, IS, and FRA).

In the "Internal Tailgate" case study, the variables Blank Support Force (BHF),
Friction Coefficient (FRC), Tensile Strength (TS), and Yield Resistance (YS) were ini-
tially considered by the specialist. Table 4 presents the domains and parameters used
to generate the database by the AutoForm software, and below, the purpose of each
parameter in the deep drawing process is briefly described. Based on these parame-
ters, it was possible to generate a database with 200 AutoForm simulations, with four
inputs (BHF, FRC, TS, and YS) and three outputs (WRI, IS, and FRA).

• FRC: the parameter is responsible for quantifying the existing sliding restriction
between the surfaces of the plate and the stamping tool. Lower coefficients of
friction decrease the risk of fractures but can increase the likelihood of wrinkling
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Table 3 – Parameters and domains of case study 1 (Cup). Source: Own authorship

Name Parameters Minimum Medium Maximum

𝑋01 FRC 0.13 0.15 0.19
𝑋02 SWI 0.5 0.75 1
𝑋03 YS 145.867 171.608 240.251
𝑋04 BHF 38000 47500 57000
𝑋05 NVA 0.159 0.199 0.239

Table 4 – Parameters and domains of case study 2 (Internal Tailgate). Source: Own authorship.

Name Parameters Minimum Medium Maximum

𝑋01 BHF 4e5 9e5 1.4e6

𝑋02 FRC 0.13 0.15 0.17
𝑋03 TS 300 356.435 400
𝑋04 YS 205.692 244.385 274.385

and even result in insufficient stretching.

• SWI: this variable relates to the way the steel hardens, having a significant effect
on the material’s response to deformation during the stamping process as the
intensity of this parameter is adjusted.

• YS: the parameter represents the stress corresponding to the transition between
the elastic and plastic regions of the steel. Tensions above the yield point pro-
mote definitive deformations in the material (necessary in stamping processes).
The greater the yield strength of steel, the greater its hardness and mechanical
strength. However, there is a tendency for steels with higher yield strengths to
have lower formability.

• BHF: the parameter regulates the sheet feeding into the stamping die. The ap-
plication of higher Blank Holder Forces is necessary to avoid the formation of
wrinkles, especially in the peripheral regions of the stamped part, in addition to
contributing to greater rigidity in the central areas. Excessive force, however, can
lead to the formation of cracks during stamping.

• NVA: the value "n," also known as the hardening coefficient, is a measure that
evaluates a material’s ability to withstand deformations before reaching the neck-
ing stage, which precedes rupture. Furthermore, this value represents the ability
of a steel to acquire additional resistance, known as hardening. Therefore, mate-
rials that have higher "n" values have a greater capacity for both deformation and
increased mechanical resistance during the stamping process.

• TS: the parameter consists of defining the ability of a material to withstand the ap-
plication of tensile forces without breaking, that is, the greater the tensile strength
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of a material, the greater its ability to withstand tensile forces without failing.

The parameters used to adjust the regression model of these studies are pre-
sented in Table 5. These parameters were defined using a factorial design.

Table 5 – Parameters used to define models. Source: Own authorship.

Case study Algorithm Estimator Depth

Cup RF 130 20
Cup ET 120 27
Internal Tailgate RF 80 20
Internal Tailgate ET 60 21

The implementation of objective functions and parameterization were the fun-
damental steps to start the evolutionary process. At this stage, we choose the NSGA-II
algorithm to perform process optimization. Thus, we perform 1000 generations, each
one composed of a population of 100 individuals (candidate solutions) with actual cod-
ing, performing 30 executions. Each individual represents a solution vector containing
several input variables, and the objective functions considered were WRI, IS, and FRA.

All AutoForm runs were performed on hardware equipped with a 2.20 GHz
i7-8750H processor and 32 GB of RAM. To run the surrogate models and genetic
algorithms, we used hardware with an i5-11300H processor, 8 GB of RAM, and a
frequency of 3.1 GHz/3.11 GHz.

5.2 ANALYSIS

This section presents the experiments carried out and the results obtained in
two case studies. Both studies aim to minimize the objectives of WRI, IS, and FRA and
carry out the evaluation of two multivariate algorithms, namely ET and RF.

5.2.1 CASE STUDY - CUP

To evaluate the significance of the defined parameters and domains, after the
database generation step using the AutoForm numerical simulation software, correla-
tion analysis is used as shown in detail a) of Figure 16. This tool allows for a preliminary
investigation of the data, aiming for a more in-depth understanding of the relationships
between the variables before creating the replacement model.

Based on the analysis of the correlations (detailed in item a) of Figure 16) be-
tween the parameters and the objectives, it is possible to infer that the SWI variable
does not present a significant correlation with any of the objectives. This indicates that
the inclusion of the SWI variable in the analysis model would be inappropriate, as it is
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Figure 16 – Correlation between variables - Cup case study (a) 5 variables, (b) 4 variables

not associated with the objectives in question and could introduce unnecessary noise
into the analysis. Therefore, the optimization process goes back to the first step, "Se-
lection of parameters and domains", excluding the SWI variable and carrying out new
numerical simulations to generate the database. Maintaining the integrity of the project
flow, the subsequent steps are performed to evaluate the impacts on the creation of
the replacement model, aiming to achieve more accurate and relevant results for the
research.

On the other hand, it is noted that the FRI and CON parameters show a similar
correlation with the analyzed objectives. They present a moderate positive correlation
with the IS and FRA objectives, while they demonstrate an inverse correlation with the
WRI objective. In turn, the YIE and NVA variables present an opposite correlation to
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those of FRI and CON. That is, they maintain a negative relationship with the IS and
FRA objectives, while they have a positive correlation with WRI.

5.2.1.1 SURROGATE MODEL

One of the objectives of the project is to develop a specific model for each
automotive part using ML techniques, which can reliably represent the intrinsic charac-
teristics of the analyzed part. To achieve this objective, two algorithms belonging to the
family of tree-based algorithms, ET and RF, were subjected to evaluation.

The training results of both algorithms, using the LOO cross-validation method,
are presented in Figure 17. Notably, both algorithms present low RMSE, lower than the
median value of 0.11. Furthermore, most models demonstrate low errors, as evidenced
between the first and third quartiles.

Figure 17 – Model training results using LOO and RMSE evaluation metric. Source: Own authorship

To improve the evaluation of the most outstanding model among the 747 cre-
ated, a sensitivity analysis is conducted, the results of which are detailed in Figure 18.
In this process, 100 fractional values were predicted for each input variable within the
ranges determined during parameter selection (represented on the x-axis). The pre-
dicted values are then plotted on the graph (y-axis).
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The SWI variable, presented in Figure 18, demonstrates difficulties during pre-
diction. This behavior can be noted by the restriction of the range of results on the
y-axis, indicating a limited correlation between the variable and the objective, resulting
in a reduced influence on the construction of the model. Furthermore, abrupt results
are observed, suggesting that the model faces difficulties in learning the most crucial
relationships or may be suffering from underfitting.

The other variables exhibit appropriate behavior, demonstrating the sensitivity
of the trained model across the entire range of values entered. This is noticeable by
the sensitivity demonstrated during the prediction of the introduced values (y-axis). It
is important to highlight that the model that uses the RF algorithm manifests more
pronounced variations compared to the ET algorithm. This discrepancy may be related
to the intrinsic characteristics of the algorithms.

Based on the results presented, the initial hypothesis, formulated during the
exploratory data analysis, that the SWI variable exerts a negative influence which is
reinforced by the sensitivity analysis of the adopted model. Given this scenario, a new
experiment plan was conducted, covering only four inputs (FRC, YS, BHF, and NVA).
Then, a new model was developed and submitted to the optimization phase, playing
the role of a surrogate model from the part under analysis.

5.2.1.2 SEARCH FOR THE BEST PARAMETER OPTION

Table 6 presents the mean value and standard deviation of the WRI, IS, and
FRA objectives obtained. Both surrogate models (ET and RF) were used in this ex-
periment since the regression algorithms demonstrated similar results in the previous
steps. Therefore, it became essential to evaluate the efficiency of both models when
applied in the optimization process and subsequent validation with the AutoForm sim-
ulation software.

Table 6 – Mean and standard deviation (std) of WRI, IS, and FRA for 30 runs - Cup case study. Source:
Own authorship

Algorithm WRI IS FRA

ET (mean ± std) 32.239 ± 6.118e−5 2.754 ± 5.640e−3 0.025 ± 0.009
RF (mean ± std) 32.254 ± 1.420e−14 2.737 ± 0.027 9.202e−3 ± 2.939e−3

Through the implementation of surrogate models using machine learning algo-
rithms, it was feasible to employ the NSGA-II algorithm to optimize predefined objec-
tives, aiming to find the most effective solutions in a multi-objective search space. To
evaluate the efficiency of the optimization process, the same convergence and diver-
sity metrics applied to the Cup case study, such as hypervolume, Dnpw, and Pareto
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Figure 18 – Sensitivity analysis - Cup case study 5 variables. Source: Own authorship

frontal visualization, were used. The average values of the optimization metrics and
the Pareto front are presented in Figures 19, 20 and 21, respectively.
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Figure 19 – Hypervolume - Cup case study. Source: Own authorship

As for convergence, in Figure 19, it is possible to notice that both algorithms
demonstrated a similar convergent trajectory. The RF algorithm showed a slight ad-
vantage, reaching a maximum value of approximately 0.158, while the ET algorithm
reached 0.157. This difference is not significant enough to declare the unfeasibility or
assert the superiority of any of the models.

Figure 20 – DNPW (left) ET and (right) RF - Internal Tailgate case study. Source: Own authorship

In Figure 20, it is possible to observe a slight advantage in the diversity pro-
vided by the RF algorithm compared to ET throughout the evolutionary generations.
The average values recorded were 0.523 for RF and 0.487 for ET, indicating that the
RF algorithm maintained a more expressive diversity throughout the evolutionary pro-
cess.

The Pareto Frontier analysis reveals how effective the algorithm was in provid-
ing the best solutions. Figure 21 graphically demonstrates that both algorithms present
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Figure 21 – Pareto front - Cup case study. Source: Own authorship

notable similarity in results, although the RF algorithm exhibits more significant vari-
ance in the data delivered.

A notable feature of NSGA-II is its consistent ability to generate Pareto fronts,
enabling the selection of individuals from a single run to analyze the results. Validation
of 20 non-dominated individuals from each set of solutions occurred in the AutoForm
software. In other words, 20 individuals were evaluated using the RF surrogate model,
while another 20 were evaluated using the ET surrogate model, seeking to evaluate
the accuracy of the proposed design model. The results obtained are presented in
Figure 22 and Table 7.

Figure 22 – Validation of results - Model Proposed x AutoForm. Source: Own authorship

Table 7 – Validation of results - Model x AutoForm. Source: Own authorship

Algorithm Metric WRI IS FRA

ET R² 0.970 0.956 0.976
RMSE 0.837 0.552 1.010

RF R² 0.930 0.881 0.947
RMSE 1.301 0.942 1.514

By analyzing Figure 22 and Table 7, it is possible to verify that both algorithms
exhibited positive performance, confirming evidence previously observed throughout
the analyses. However, it is noteworthy that the ET algorithm demonstrated better per-
formance for all objectives. Table 7 presents metrics such as R² and RMSE, used for
a qualitative assessment of the predictive capacity of the proposed model. In this case
study, such metrics revealed remarkable efficiency in prediction, especially for the WRI
objective.
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Finally, the model provided positive results during the selection phase of the
best parameters for automotive stamping. From the exploratory data analysis, the
model enriched the specialist’s perceptions, providing relevant information in advance
and allowing more informed decision-making.

In this case study, the hypothesis that the SWI variable would not contribute
significantly to the forming process was validated. Furthermore, the slight superiority
of the ET algorithm in terms of assertiveness was highlighted, which is one of the main
decisive factors in this specific scenario.

5.2.2 CASE STUDY - INTERNAL TAILGATE

The methodology used in this research involved the validation of two case stud-
ies, highlighting the second case, in this section, in which the proposed methodology
was applied to a real automobile part. At this stage, in addition to the phases previously
conducted in the evaluation of the laboratory case study (Cup), the last phase was in-
cluded, which includes the comparison between methodologies. This analysis covers
the empirical approach currently conducted by experts in the field and contrasts it with
the model proposed in this study.

The assessment of the significance of the parameters and domains estab-
lished in this case study is carried out through the application of correlation analysis,
as illustrated in Figure 23.

After analyzing the correlations between the parameters and the objectives,
we observe results that allow us to conclude that all the input variables have a sub-
stantial correlation with the established objectives. This finding reinforces the validity
and effectiveness of the experimental design proposed by specialists in the field.

It is worth highlighting the presence of a significantly strong reverse and direct
correlation between the BHF input variable and the WRI and FRA objectives, respec-
tively. This indicates that the BHF variable has a relevant influence on the objectives
mentioned above. An unusual factor to highlight is the notable similarity of the TS and
YS variables in relation to all objectives. This results in a perfect correlation of one
between these variables.

5.2.3 SUROGATE MODEL

After validating the parameters and domains, surrogate models, namely RF
and ET, were developed. Subsequently, using the leave-one-out (LOO) cross-validation
methodology in conjunction with the RMSE metric, the model with the best perfor-
mance for each algorithm was listed. The figure 24 shows the distribution of results
obtained in both algorithms during training using the LOO approach. Notably, both
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Figure 23 – Correlation between variables - Internal Tailgate case study. Source: Own authorship.

algorithms demonstrate low RMSE, recording values below the median of 0.2. The
minimum values achieved were 0.0091 with the ET algorithm and 0.0176 for the RF
algorithm, suggesting the excellent performance of the trained models.

Figure 24 – Model creation using leave-one-out cross-validation. Source: Own authorship.

To obtain a deeper understanding of the developed model, a sensitivity analy-
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sis is performed to assess its effectiveness. This analysis aims to examine the influence
of input variables on the model output to determine whether the model can adequately
represent the problem at hand. Figure 25 shows the analysis performed, where some
points can be observed, namely:

• The two regression algorithms produced similar results, showing a close corre-
spondence between variations in the domains (x-axis) and corresponding ob-
jectives (y-axis). There is only a slight discrepancy between the models in the
analyses carried out by the TS and YS variables.

• The BHF variable is the most relevant for all objectives, which can be verified by
the variation expressed on the y-axis.

• The TS and YS variables exhibit analogous behavior in relation to the distribution
along the y-axis. Furthermore, they are less relevant for all objectives, corrobo-
rating evidence previously identified during the correlation analysis.

• Both algorithms reveal more incredible difficulty in characterizing the TS and YS
variables, highlighting a discrepancy in the results. In this context, it is noted that
the ET algorithm displays higher values in relation to the RF on the y-axis.

Based on the obtained results, it was observed that both algorithms presented
similar RMSE metric and sensitivity analysis in relation to the input parameters. There-
fore, both algorithms will be taken to the next step of the design, in which the objective
is to determine which replacement model will be more suitable to accurately delineate
the problem. In this analysis, it is important to highlight that the TS and YS parameters
have less influence on the defined objectives, and that BHF stood out positively for all
objectives.
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Figure 25 – Sensitivity analysis - Internal Tailgate case study. Source: Own authorship.

5.2.4 SEARCH FOR THE BEST PARAMETER OPTION

In a similar way to the Cup case study, table 8 exposes the average values
and standard deviations achieved for the WRI, IS, and FRA objectives. Both algorithms
presented comparable results with regard to the minimum value obtained, highlighting
the RF algorithm, which managed to achieve minimization levels higher than ET in all
objectives, in addition to exhibiting lower variance in the results obtained.

To further evaluate the effectiveness of the optimization process, convergence
and diversity metrics were used, as shown in Figures 26, 27, and 28. These figures
present the average values of the hypervolume, Dnpw, and Pareto front metrics, re-
spectively.

As for convergence, in Figure 26, it is evident that both algorithms reached
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Table 8 – Mean and standard deviation (std) of WRI, IS, and FRA for 30 runs - Internal Tailgate case
study. Source: Own authorship

Algorithm WRI IS FRA

ET (mean ± std) 1.300 ± 1.168e−3 11.921 ± 0.010 1.240e−5 ± 1.200e−5

RF (mean ± std) 1.299 ± 2.220e−16 11.869 ± 1.662e−3 7.960e−6 ± 2.640e−6

Figure 26 – Hypervolume - Internal Tailgate case study. Source: Own authorship.

maximum optimization convergence quickly, close to generation 100. Furthermore, the
RF algorithm achieved greater convergence than ET. It is possible to observe the low
convergence of the genetic algorithm, which can be attributed to the minimization chal-
lenges inherent to this multi-objective problem.

Figure 27 – DNPW (left) ET and (right) RF - Internal Tailgate case study. Source: Own authorship

Figure 27 highlights a significant diversity in the solutions generated by the two
replacement models, with a notable increase in the first 100 generations due to the
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continuous convergence of the algorithm. Additionally, a higher average value for the
RF algorithm stands out. After generation 100, it is noticeable that, together with the
convergence metrics, the local optimum optimization point was reached.

Figure 28 – Pareto front - Internal Tailgate case study. Source: Own authorship.

Figure 28 shows the 100 non-dominated solutions for the problem objectives
using the ET and RF surrogate models. This approach provides the specialist with
diverse access to solutions, simplifying decision-making in selecting the most appro-
priate parameters and domains to obtain the best results. The graphical representation
also helps in visualizing the diversity in the suggestions provided by the model.

In this context, it is observed that both algorithms present similar results in both
convergence and diversity, suggesting that they converge to similar solutions.

In the final stage of the project, some individuals were validated in the Auto-
Form software, the results of which are presented in Figure 29 and Table 9.

Figure 29 – Validation of the parameters suggested by the model. Source: Own authorship.

Table 9 – Validation of results - Model x AutoForm. Source: Own authorship

Algorithm Metric WRI IS FRA

ET R² 0.983 0.636 0.784
RMSE 0.146 0.786 0.548

RF R² 0.989 0.441 0.741
RMSE 0.125 0.985 0.655

Figure 29 shows the values obtained after validation in the AutoForm sim-
ulation software. The goal is to achieve highly accurate model suggestions, that is,
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minimizing the discrepancy between the model suggestions and the actual AutoForm
outputs, characterizing it as a well-adjusted and practical model.

Despite the complexities inherent to the optimization of multi-objective prob-
lems, it was possible to identify positive results through the suggestions generated by
the proposed model when compared with the empirical analysis previously conducted
by experts in the field. Table 10 details the configuration of the variables and the re-
sults of the objectives obtained by the original stamping of the part, contrasting with
the configuration suggested by the proposed approach.

Table 10 – Difference in proportion of affected area, in percentage, by objective. Source: Own authorship

BHF FRC TS YS WRI IS FRA

Empirical 3.90e5 0.15 350 245 4.63 14.76 0
Proposed
Model 4.73e5 0.15 324.92 218.59 3.93 13.6 0

The suggested model resulted in the production of a fracture-free part while
reducing the initial wrinkling by approximately 15% and decreasing the stretch region
by approximately 8%. In more precise terms, the model results represent a substantial
improvement in both the shape of the part and the costs related to its development.
Furthermore, it offers essential insights into defining stamping parameters and assists
in the innovation of new materials.

Comprehensively, the proposed methodology obtained positive results both in
the laboratory case study and in practical application on an actual automobile part.
Regarding the comparison of efficiency between the algorithms, a slight superiority of
the RF algorithm is noted in terms of diversity and convergence. However, the ET algo-
rithm demonstrated superiority in the assertiveness of the proposed solutions, that is, it
presented more realistic suggestions, directing experts in the area more appropriately.
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6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Steel forming by stamping is a process widely used in the automotive industry,
where controlled deformation of metal sheets occurs. Properly defining the process
parameters and materials for each part is essential to maintain high production criteria
with high quality. However, this task is challenging due to the intrinsic characteristics of
the problem since it is characterized as a multi-objective problem, where its objectives
are usually antagonistic, making it challenging to find the desired local minimum of the
objectives together.

To reduce the incidence of defects such as WRI, IS, and FRA as much as pos-
sible, advanced optimization techniques and machine learning algorithms have been
used in recent years as carried out in (CUI et al., 2020), where the strategy adopted
includes the combination of simulation of finite elements with the RSM algorithms and
the NSGA-II multi-objective genetic algorithm to explore the optimal stamping param-
eters. These approaches have significantly accelerated research and development by
combining empirical analyses carried out by experts in the field.

Therefore, in this work, we develop an alternative model using data-driven al-
gorithms to predict the process parameters and materials of steel intended for stamp-
ing. The capabilities of these models were highlighted in two case studies: one in a lab-
oratory environment called “Cup” and another involving a real automobile part called
“Internal Tailgate”. By employing a hybrid solution that combines a machine learning
model as a surrogate model coupled with a multi-objective optimizer, we achieve a low
margin of error in parameter prediction. This not only speeds up decision-making by
experts in the field but also significantly raises the technological and intellectual level
in the specific domain.

With the aim of supporting experts in the field and streamlining the decision-
making process, intermediate tools were incorporated that provide targeted information
on the progress of the stages of the proposed model. In the “Cup” laboratory case
study, we were able to observe these tools in operation. After creating the replacement
model, it was possible to identify and validate the hypothesis that the SWI parameter
was not suitable for application during the tests.

When compared to the systematic literature review carried out, this work pre-
sented notable scientific contributions, such as the following aspects:

The first highlight lies in the implementation of a robust and efficient method-
ology. The work adopted a hybrid solution, integrating machine learning and multi-
objective optimization techniques.
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Another relevant point is the development of auxiliary tools designed to facili-
tate the integration between the simulation system and the developed algorithms. This
proved necessary due to the intrinsic limitations of the software used.

Furthermore, the work innovated by applying sensitivity analysis techniques
during the process of selecting the best parameters. This approach deepened the un-
derstanding of the database used, providing valuable insights for the precise definition
of stamping parameters and domains.

Despite the positive results obtained, this work identified several challenges
and opportunities that can be explored in future research. Among them, the possibil-
ity of expanding the number of objectives addressed stands out. Although this study
explored the three main objectives related to automotive stamping, there is an opportu-
nity to evaluate other objectives of lesser significance, which would imply an increase
in the number of objectives. Although the proposed model is able to deal with such
challenges, it would be beneficial to carry out a comparative study between different
algorithms or optimization methodologies. Additionally, an excellent research opportu-
nity could arise by exploring the coupling with the project carried out by Douglas Sgrott
(SGROTT, 2022).
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