
SANTA CATARINA STATE UNIVERSITY - UDESC
COLLEGE OF TECHNOLOGICAL SCIENCE - CCT

GRADUATE PROGRAM IN APPLIED COMPUTING - PPGCAP

HENRIQUE ZANELA COCHAK

CONTAINER ORCHESTRATION IMPACT ON SPIFFE IDENTITY
ARTIFACTS: A PERFORMANCE ANALYSIS OF DOCKER VS

KUBERNETES

JOINVILLE

2025

HENRIQUE ZANELA COCHAK

CONTAINER ORCHESTRATION IMPACT ON SPIFFE IDENTITY
ARTIFACTS: A PERFORMANCE ANALYSIS OF DOCKER VS

KUBERNETES

Master thesis presented to the Graduate
Program in Applied Computing of the
College of Technological Science from
the Santa Catarina State University, as a
partial requisite for receiving the Master’s
degree in Applied Computing.

Supervisor: Dr. Charles Christian Mi-
ers

JOINVILLE

2025

Ficha catalográfica elaborada pelo programa de geração automática da

Biblioteca Universitária Udesc,

 com os dados fornecidos pelo(a) autor(a)

Cochak, Henrique
 Container Orchestration Impact on SPIFFE Identity
Artifacts: A Performance Analysis of Docker vs Kubernetes /
Henrique Cochak. -- 2025.
 80 p.

 Orientador: Charles Christian Miers
 Dissertação (mestrado) -- Universidade do Estado de
Santa Catarina, Centro de Ciências Tecnológicas, Programa
de Pós-Graduação em Computação Aplicada, Joinville, 2025.

 1. Cloud Computing. 2. Microservices. 3. Security. 4.
Benchmarking. I. Christian Miers, Charles. II. Universidade do
Estado de Santa Catarina, Centro de Ciências Tecnológicas,
Programa de Pós-Graduação em Computação Aplicada. III.
Título.

Cochak, Henrique Zanela
Container Orchestration Impact on SPIFFE Identity Artifacts: A Performance

Analysis of Docker vs Kubernetes/ Henrique Zanela Cochak. – 2025 81 p.

Supervisor: Dr. Charles Christian Miers
Thesis (Master’s degree) – Santa Catarina State University, College of Technolo-
gical Science, Graduate Program in Applied Computing, Joinville, 2025.

1. Cloud Computing. 2. Microservices. 3. Security. 4. Benchmarking. I. Miers,
Charles Christian. II. Santa Catarina State University, College of Technological
Science, Graduate Program in Applied Computing. III. Title.

Henrique Zanela Cochak

Container Orchestration Impact on SPIFFE Identity Artifacts: A Performance
Analysis of Docker vs Kubernetes

Master thesis presented to the Graduate Program in Applied Computing of the College
of Technological Science from the Santa Catarina State University, as a partial requisite
for receiving the Master’s degree in Applied Computing.

Master Thesis Committee:

Charles Christian Miers, Dr.
President/Advisor

Santa Catarina State University

Maurício Aronne Pillon, Dr.
Board member

Santa Catarina State University

Marco Antonio Torrez Rojas, Dr.
Board member

Instituto Federal Catarinense

Joinville, 25th November 2025

I dedicate this work to my family, friends,
and professors who guided me to accom-
plish this.

ACKNOWLEDGMENTS

I dedicate this work and the whole effort required to it. First, I am grateful to my
parents for all their support and patience in helping me reach this step. I want to give a
special thanks to Prof. Charles for all the opportunities he has offered me so far. One
of them is meeting such a great group of people in the LARC-USP, specifically Prof.
Marcos Simplicio. Another person I believe has a great influence on this work is Marco
Antonio Marques. He is a person with tenacity and resilience to reach his goals. Today,
I find him as a mentor between collaborations, and I thank him for all the help provided
so far. Furthermore, I would like to thank the other professors at Graduate Program
in Applied Computing (PPGCAP) and collaborators at Laboratório de Processamento
Paralelo e Distribuído (LabP2D), who directly or indirectly participated in this process
of my evolution as an academic.

ABSTRACT

This thesis addresses gaps in the SPIFFE-IdT project by consolidating four indepen-
dent security artifact implementations into a unified architecture and evaluating their
performance in container-orchestrated environments. Comprehensive benchmarking
across Docker Compose and Kubernetes reveals that Kubernetes environment demon-
strate 15-35% lower CPU utilization while requiring 15-30% higher memory alloca-
tion. Network analysis identifies connection establishment as the primary source of
orchestration overhead, with non-pooled operations experiencing up to 22.6% higher
latency in Kubernetes. Connection pooling effectively neutralizes this overhead, reduc-
ing performance impact to below 5% for modes implementing connection reuse. LSVID
consistently demonstrates the lowest resource footprint, validating its lightweight de-
sign. The findings reveal that connection operations dominate performance behavior
in security-focused deployments. In particular, frequent mTLS and JWKS exchanges
impose substantial overheads, which can be effectively mitigated through connection
pooling. This underscores that optimizing connection reuse is key to achieving efficient
and scalable identity management.

Keywords: Cloud computing, Microservices, Security, Benchmarking.

RESUMO

Esta tese aborda lacunas no projeto SPIFFE-IdT ao consolidar quatro implementações
independentes de artefatos de segurança em uma arquitetura unificada e avaliar seu
desempenho em ambientes orquestrados por contêineres. Análises de desempenho
entre Docker Compose e Kubernetes revelam que o ambiente Kubernetes demonstra
uma utilização menor de CPU (15-35%) menor enquanto requer uma maior alocação
de memória (15-30%). A análise de rede identifica o estabelecimento de conexões
como a principal fonte de sobrecarga de orquestração, com operações sem pooling ex-
perimentando até 22,6% maior latência no Kubernetes. O pooling de conexões mitiga
essa sobrecarga, reduzindo o impacto no desempenho para abaixo de 5% nos modos
que implementam reutilização de conexões. O LSVID demonstra consistentemente o
menor consumo de recursos, validando seu design leve. Os resultados revelam que
operações de conexão dominam o comportamento de desempenho em implantações
focadas em segurança. Em particular, trocas frequentes de mTLS e JWKS impõem
sobrecargas substanciais, que podem ser efetivamente mitigadas através do pooling
de conexões. Isso ressalta que otimizar a reutilização de conexões é fundamental para
alcançar gerenciamento de identidade eficiente e escalável.

Palavras-chaves: Computação em nuvem, Microsserviços, Segurança, Análise de de-
sempenho.

LIST OF FIGURES

Figure 1 – Identity, Credential, and Access Management (ICAM) definition. . . . 19
Figure 2 – JSON Web Token (JWT) SPIFFE Verifiable Identity Document (SVID)

mandatory claims scheme. 23
Figure 3 – High level view of the SPIFFE Runtime Environment (SPIRE) archi-

tecture. 25
Figure 4 – SPIFFE-IdT Project timeline. 28
Figure 5 – Architectural Unification: Consolidation of Four SPIFFE-IdT PoCs into

a Single Integrated Prototype. 42
Figure 6 – Testbeds design. 46
Figure 7 – Prometheus metrics collection and Grafana visualization. 47
Figure 8 – Unified Proof of Concept (PoC) architecture with router based mode. 50
Figure 9 – Minting process flow. 53
Figure 10 – DVID validation flow. 54
Figure 11 – ID-Mode and Anon-Mode validation flows. 54
Figure 12 – LSVID validation flow. 55
Figure 13 – CPU usage comparison for minting operations across assertion modes 57
Figure 14 – CPU usage comparison for validation operations across assertion

modes . 57
Figure 15 – Memory usage comparison for minting across assertion modes . . . 59
Figure 16 – Memory usage comparison for validation across assertion modes . 59
Figure 17 – M-Tier ANONMODE validation. 64
Figure 18 – DVID minting performance breakdown. 65
Figure 19 – Phase 1 - Resources consumption. 77
Figure 20 – Phase 3 - Execution Time. 79

LIST OF TABLES

Table 1 – Project list participants by year. 29
Table 2 – Phase 1 parameters. 30
Table 3 – Phase 2 parameters. 31
Table 4 – Phase 3 parameters. 32
Table 5 – Inclusion and exclusion criteria for related works. 35
Table 6 – Comprehensive comparison of container orchestration performance

and security studies. 36
Table 7 – Connection Pooling Summary. 56
Table 8 – CPU Usage for Minting Operation - Docker vs Kubernetes (%). 58
Table 9 – CPU Usage for Validation Operation - Docker vs Kubernetes (%). . . 58
Table 10 – Memory Usage for Minting Operation - Docker vs Kubernetes (MB). . 60
Table 11 – Memory Usage for Validation Operation - Docker vs Kubernetes (MB). 60
Table 12 – Token Minting execution time cost (ms). 62
Table 13 – Validation execution time cost - M-Tier workload (ms). 63
Table 14 – Validation execution time cost - Target workload (ms). 63
Table 15 – Phase 2 - Resource consumption. 77
Table 16 – Phase 2 - Execution Time. 78

API Application Programming Interface

CISA U.S. Department of Homeland Security, Cybersecurity and Infrastructure Secu-
rity Agency

CNI Container Network Interface

DNS Domain Name System

CaaS Containers as a Service

CNCF Cloud Native Computing Foundation

DVID Delegated Assertion SVID

gRPC gRPC Remote Procedure Call

HPE Hewlett Packard Enterprise

IaaS Infrastructure as a Service

IAM Identity and Access Management

ICAM Identity, Credential, and Access Management

IDM Identity Management

IdP Identity Provider

IFC Instituto Federal Catarinense

IMS Identity Management System

JWS JSON Web Signature

JSON JavaScript Object Notation

JWT JSON Web Token

LabP2D Laboratório de Processamento Paralelo e Distribuído

LSVID Lightweight SVID

MSA Microservices Architecture

mTLS mutual Transport Layer Security

NIST National Institute of Standards and Technology

PaaS Platform as a Service

PoC Proof of Concept

PPGCAP Graduate Program in Applied Computing

REST Representational State Transfer

RSA Rivest-Shamir-Adleman

SaaS Software as a Service

SPIFFE Secure Production Identity Framework for Everyone

SPIRE SPIFFE Runtime Environment

SVID SPIFFE Verifiable Identity Document

TLS Transport Layer Security

TTP Trusted Third Party

UCaaS Unified Communications as a Service

UDESC Universidade do Estado de Santa Catarina

URI Uniform Resource Identifier

URI Uniform Resource Locator

USP Universidade de São Paulo

ZKP Zero Knowledge Proof

IPC Inter-Process Communication

JWKS JSON Web Key Sets

TSDB Time Series Database

CONTENTS

1 INTRODUCTION . 15

2 FUNDAMENTAL CONCEPTS . 18
2.1 SPIFFE / SPIRE . 21
2.2 Motivation and Problem Definition . 26
2.2.1 Motivation: The SPIFFE-IdT Project 28
2.2.1.1 SPIFFE IdT Project - Phase I - DVID 30
2.2.1.2 SPIFFE IdT Project - Phase II - Nested Token Model 31
2.2.1.3 SPIFFE IdT Project - Phase III - LSVID 31
2.2.2 Problem Definition . 32
2.3 Related Works . 34
2.3.1 Search Methodology . 34
2.4 Chapter Considerations . 39

3 PROPOSAL . 41
3.1 Unification of SPIFFE-IdT models . 41
3.2 Relevant Scenarios . 43
3.3 Testbed . 44
3.3.1 Workload Architecture . 44
3.3.2 Hardware Specifications . 45
3.3.3 Testbed Configurations . 46
3.4 Chapter Considerations . 48

4 EXPERIMENTS AND DATA ANALYSIS 50
4.1 Implementation of the Unified Architecture 50
4.1.1 Mode Selection at Subject-WL . 51
4.1.2 Middle-Tier Subrouter Architecture 51
4.1.3 Functional Preservation and Execution Flow 52
4.1.3.1 Minting Process . 52
4.1.3.2 Validation Process . 53
4.1.4 Connection Pooling Analysis Across Assertion Modes 55
4.2 Data Analysis and Results . 56
4.2.1 Network Performance Analysis . 61
4.3 Chapter Considerations . 66

5 CONSIDERATIONS & FUTURE WORK 68

BIBLIOGRAPHY . 71

APPENDIX A – RESULTS ON PAST IMPLEMENTATIONS/DEPLOYS 76
A.1 Phase 1 - DVID . 76

A.2 Phase 2 - Nested Model . 77
A.3 Phase 3 - LSVID . 79

15

1 INTRODUCTION

Today, cloud computing is one of the leading technologies enabling the dy-
namic provisioning of processing, storage, and networking resources. Cloud providers
may employ different virtualization technologies, including virtual machines and con-
tainers, to abstract the physical infrastructure supplying those resources. However, the
benefits of cloud computing come with administrative challenges regarding the secu-
rity and privacy of provided services (GONZALEZ et al., 2012; KUMAR; GOYAL, 2019;
ALLIANCE, 2023).

In particular, Secure Production Identity Framework for Everyone (SPIFFE)
provides a set of open-source standards for secure workload identification and au-
thentication, specifically designed for dynamic, heterogeneous, and federated cloud
environments (FELDMAN et al., 2020). Its reference implementation, SPIRE, is widely
available to the academic community and the software industry, further expanding the
toolset available for secure identity management. SPIFFE stands out due to its unique
focus on securing the identities of workloads, making SPIFFE particularly well-suited
for cloud computing environments, in which distributed workloads, often executing with
microservice architecture, need to authenticate each other to establish secure con-
nections mutually. However, even SPIFFE has its solution scope well defined, and the
context covered by its main security document, SVIDs, is limited to the identity of the
workload directly sending or receiving a message.

This led to the development of the SPIFFE-IdT project, aiming to enhance and
extend the SPIFFE / SPIRE frameworks, focusing on security, performance, and func-
tionality. The project was divided into three phases (Spanning from 2021 to 2023),
each developing new security documents or models to fulfill predefined use cases in
the project. Several papers derived from it, including three papers written as a byprod-
uct of benchmarking tests to validate the efficiency and gather tangible evidence of the
artifacts created in each phase. To further build upon the foundations established by
the PoC solutions, the research highlights the necessity of a richer and more complex
operational environment closely aligned with the real-world applications of the SPIFFE
framework. While the initial tests provided valuable baseline insights, they represent
only a fraction of the intricate scenarios encountered in dynamic, federated environ-
ments. A more thriving environment would include diverse workloads operating in in-
terconnected domains, handling high volumes of interactions, and leveraging various
levels of trust and authentication. This type of setup better reflects the challenges and
opportunities of modern cloud-native architectures, which demand robust and scalable
identity management solutions.

16

Therefore, this master thesis proposes continuing the SPIFFE-IdT project, with
divergent goals originally from it, to enhance SPIFFE capabilities with new security
documents and models in mind. The first goal is to ensure that each artifact is scalable
and can effectively handle the demands of modern, dynamic environments. Scalability
is a critical aspect of cloud-native architectures, in which workloads can rapidly grow
in volume and complexity. The existing codebase will undergo a careful review and
refactoring process to achieve this. This will focus on supporting efficient scaling, both
in terms of performance and resource management. As part of this process, each arti-
fact’s current design will be revisited to identify potential bottlenecks or limitations that
could hinder scalability. Addressing these issues early aims to optimize the system’s
ability to cope better with increasing workload demands and ensure smooth, scalable
performance across diverse environments.

Subsequently, each artifact will be tested within an orchestrated environment
using the Kubernetes platform, a key tool in the Cloud Native Computing Founda-
tion (CNCF) ecosystem. This will be a controlled setting to evaluate how the refac-
tored artifacts perform closer to real-world, cloud-native conditions. Following these
tests, a new series of benchmarking will be conducted to assess the updated arti-
facts’ practicality and effectiveness. These benchmarks will provide valuable insights
into the artifacts’ scalability, resource consumption, and overall performance in an op-
erational environment, helping to validate the improvements made during the refac-
toring process. For both goals, the observability tool Prometheus, another graduated
CNCF tool, is employed to gather performance and resource usage data. However,
each goal will leverage Prometheus differently. Thus, for the scenario without orches-
tration, Prometheus will monitor the system’s resource consumption, including CPU,
memory, and network usage, to identify bottlenecks and assess the efficiency of the
refactored artifacts under varying load conditions. During the benchmarking phase in
the Kubernetes environment, Prometheus will track predefined metrics, which will later
be analyzed.

The primary objective of this thesis is refine and extend the work conducted
under the SPIFFE-IdT project by reassessing the PoCs artifacts, and adapting them
for container-orchestrated environments, specifically Kubernetes. Unlike the original
project, which focused on developing security documents and models, this research
shifts its focus toward evaluating their feasibility and performance in the real world.

A major contribution of this work is the benchmarking and performance eval-
uation of the refactored artifacts within containerized environments. This involves sys-
tematically measuring how container orchestration affects resource utilization, compu-
tational overhead, and system responsiveness under different workloads. By leverag-
ing Prometheus, a CNCF observability tool, this research will collect detailed metrics,

17

providing empirical data to validate the proposed enhancements in the SPIFFE frame-
work.

This research follows an applied methodology, systematically evaluating the
scalability and performance of PoCs artifacts in a containerized environment. The
methodology is structured around a three-phase test plan, ensuring a thorough as-
sessment before advancing to the next stage. The first phase of the test plan involves
the reevaluation of artifacts created. This step includes analyzing their current imple-
mentation, identifying dependencies, and assessing potential scalability challenges.
The second phase focuses on benchmarking the reevaluated artifacts in a controlled
environment with a group of predefined metrics, creating a baseline measurement. This
baseline will later serve as a reference point when evaluating the impact of container
orchestration. The third phase involves the adaptation and integration of the new arti-
facts into a Kubernetes environment, followed by another round of benchmarking. This
step evaluates the feasibility of running these artifacts in cloud-native architectures and
investigates whether container orchestration introduces significant performance trade-
offs. Kubernetes-specific metrics, collected using Prometheus, will provide empirical
insights into resource efficiency, scaling behavior, and overall system responsiveness.

The work is organized as follows. Chapter 2 addresses the fundamental con-
cepts of cloud computing, identity, and access systems. Furthermore, it explores how
the SPIFFE-IdT Project was developed and provides the requirements explored in re-
lated works and the motivation for this master thesis. Chapter 3 proposes the research
plan, defining the metrics to be measured, how they will be collected, and the testbed
environment for the unification and evaluation of the artifacts. Chapter 4 presents the
implementation of the unified architecture, the experimental results, and a compre-
hensive data analysis of the performance characteristics across both Docker Com-
pose and Kubernetes deployments. Chapter 5 discusses key findings, implications,
and outlines directions for future research in SPIFFE-based identity management for
container-orchestrated environments.

18

2 FUNDAMENTAL CONCEPTS

According to the US government agency National Institute of Standards and
Technology (NIST), cloud computing is defined as a model for enabling ubiquitous and
convenient on-demand network access to a shared pool of computing resources, e.g.,
networks, servers, storage, applications, services, that can be rapidly provisioned and
launched with minimal management effort or interaction from the cloud provider (MELL;
GRANCE, 2011). Cloud computing has emerged as one of the fastest-growing tech-
nologies in computer science, playing a crucial role in transforming personal, govern-
mental, and professional activities. Some of the latest features include performance im-
provements related to better management of cloud provider resources and increased
security since providers also offer a broad set of policies and control technologies,
strengthening the security of the organization’s data, applications, and infrastructure (MI-
CROSOFT, 2024a).

There are several cloud computing service models, each providing a set of
resources to deliver more specialized services. The most widely accepted model is
that of NIST, classifying cloud computing into three service models: Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)
(MELL; GRANCE, 2011). However, there are more recent models, considered to be
more niched cases, such as Containers as a Service (CaaS) (REDHAT, 2024) and
Unified Communications as a Service (UCaaS) (MICROSOFT, 2024b). In addition to
the service model, the same document (Mell e Grance (2011)) also classifies clouds
into deployment models: private, community, public, and hybrid. With the expansion of
these cloud computing models, a similar growth in coding architecture models that can
benefit from it is seen. Here, Microservices Architecture (MSA) advocates implement-
ing small-scale and independently distributed services, decomposing the application
into a set of small services and making them communicate with each other through
light weight mechanisms (e.g., Representational State Transfer (REST)ful Application
Programming Interface (API) or stream-based communications) (FOWLER; LEWIS,
2014).

While MSA offers flexibility and scalability, it also introduces new security chal-
lenges. Microservice architecture does not simplify an application; it only distributes the
application logic into multiple smaller components, resulting in a much more complex
network interaction model between components (SUN; NANDA; JAEGER, 2015). Each
microservice must be individually secured, authenticated, and authorized, increasing
the complexity of managing identity, access control, and data protection across nu-
merous interconnected components. This distributed model also broadens the attack

19

surface, as each service endpoint represents a potential entry point for unauthorized
access. Consequently, robust security practices, such as mutual authentication, en-
cryption, and fine-grained access control, are critical to maintaining a secure microser-
vices environment.

To address the security complexities introduced by MSA, organizations uti-
lize ICAM frameworks as a foundation, along with other security strategies, to ensure
comprehensive protection. ICAM, more broadly known as Identity and Access Man-
agement (IAM), provides a structured approach for defining, enforcing, and managing
access policies across distributed systems. Only authorized users and services can
access specific resources and functionalities. According to U.S. Department of Home-
land Security, Cybersecurity and Infrastructure Security Agency (CISA) (SECURITY;
(CISA), 2023a), ICAMs are essential for securing dynamic environments (e.g., mi-
croservices, federations) by offering identity verification, credential management, and
access controls across both human and non-human entities. CISA provides an excep-
tional briefing, illustrated in Figure 1.

Figure 1 – ICAM definition.

Definition: Identity
Management is the set of

practices that allow an
organization to establish,
maintain, and deactivate

identities. An identity is the
set of "attributes that

describe an individual within
a given context.

Techniques: Identity
proofing, unique identifiers,

identity resolution
Tools: Passwords and

Identifications, biometrics

Identity
Management Definition: Credential

Management is the set of
practices that an

organization uses to issue,
track, update, and revoke
credentials for identities
within a given context. A
credential confirms an

individual's claimed identity.
Techniques: Physical

papers and cards, electronic
credentials

Tools: Credential card,
password, digital certificate

Credential
Management

Definition: Access
Management is the set of

practices that enables only
those permitted the ability to

perform an action on a
particular resource.
Techniques: Policy
management and

administration,
authorization,

authentication, provisioning
Tools: Trust frameworks,
network access policies

Access
Management

Governance

Federation

Adapted from (SECURITY; (CISA), 2023b).

To meet the security demands of microservices, ICAM frameworks go beyond
basic access control, incorporating granular policies that adapt to complex, distributed
architectures. Given the diversity of users, devices, and services interacting within mi-
croservice environments, ICAM offers an essential layer of control, allowing organiza-
tions to dynamically adjust access privileges and apply consistent identity management
practices across multiple domains, also known as federations. A federated approach
promotes mutual trust and interoperability between clouds and communities of inter-

20

est, having the autonomy to set agreed-upon rules for establishing trust and conditions
for sharing information (SECURITY; (CISA), 2023b), defining what is referenced as
governance: the complete framework of rules, policies, and processes that the issuing
authority follows to manage and oversee the issuing process, ensuring that the author-
ity maintains high standards of accuracy, security, and accountability when verifying
identities.

ICAM frameworks are the foundational processes of digital identity manage-
ment, authentication, and authorization. According to the Digital Identity Guidelines
published by NIST (GRASSI; GARCIA; FENTON, 2017), a digital identity is defined
as the unique, verifiable representation of a subject engaged in an online transaction.
This identity must be unique within the context of a specific digital service, although it
does not have to identify the subject uniquely in all contexts. Managing these digital
identities encompasses a range of policies, tools, and mechanisms designed to over-
see their lifecycle, which may include individuals, software, or hardware components.
This management is essential for establishing trust within the system, enabling secure
interactions among different entities.

Authentication plays a crucial role in this framework, as it verifies a claimed
identity based on a pre-existing label from a mutually recognized namespace (ABOBA;
WOOD, 2003). Digital signatures and public key certificates are commonly employed
to facilitate authentication, which are issued by a Trusted Third Party (TTP) to ensure
the correct association of a public key with a specific entity. In conjunction with authen-
tication, authorization determines whether a particular right, such as access to specific
resources, can be granted to the holder of a credential (ABOBA; WOOD, 2003). These
processes, digital identity management, authentication, and authorization, create a ro-
bust framework that supports secure access and interaction within modern digital en-
vironments.

Due to its distributed and scalable nature, implementing strict and well-defined
security measures is a common requirement, especially in cloud computing. Robust
authentication and authorization protocols are critical to protect data and applications
from unauthorized access and breaches. Among the available solutions for securing
cloud environments, the SPIFFE framework (FELDMAN et al., 2020) stands out as
a significant example of an Identity Management System (IMS), a specialized sub-
set within IAM solution. As its classification suggests, SPIFFE is explicitly dedicated to
identity management rather than broader access control tasks, defining an open frame-
work and standards for identifying workloads and securing their communications. To re-
duce the risk of breaches through credential compromise, SPIFFE provides a strongly
attested identity for authentication across the entire infrastructure, a key rotation mech-
anism, and addresses security needs by enabling, among other applications, verifiable

21

mTLS connections between services. This ensures secure communication between
workloads, no matter where they are deployed (FELDMAN et al., 2020), facilitating the
establishment of a zero-trust architecture (ROSE et al., 2020), one of SPIFFE’s core
principles.

2.1 SPIFFE / SPIRE

SPIFFE is an open-source set of standards designed to establish interopera-
ble software identity across diverse platforms and organizations, providing a uniform
identity control plane across modern and heterogeneous infrastructure. It facilitates
the automated issuance and validation of cryptographic identities for non-human en-
tities, such as servers and services, enabling secure communication over networks
(FELDMAN et al., 2020). The SPIFFE standard operates under the zero trust security
model (STAFFORD, 2020), a cybersecurity paradigm focused on resource protection
and the premise that trust is never granted implicitly but must be continually evaluated.
Under this model, every entity must undergo strict identity verification and authoriza-
tion before accessing resources, whether a user, device, or application. This ensures
trust is established explicitly and securely, regardless of the entity’s location or network
boundaries. While SPIFFE manages the lifecycle of the identities it emits, it does not
engage directly with the identities it provides, leaving implementation for authentication
and access control to the respective services. Importantly, SPIFFE does not address
use cases involving human identities, focusing solely on automated identification for
machines and services.

A service is a distinct piece of software deployed with a specific configuration
to fulfill a particular purpose. This can involve multiple instances performing the same
function, such as a cluster of servers handling web requests or a background worker
program processing tasks from a queue. In some cases, a service might represent a
collection of interconnected systems working together, like a web application that de-
pends on a database backend for storing and retrieving data. In the context of SPIFFE,
it is useful to further narrow the definition by considering workloads at a more gran-
ular level. Workloads can refer to individual processes running on a node, especially
in container orchestration platforms, in which multiple isolated workloads share the
same infrastructure (FELDMAN et al., 2020). This granular view is significant because
it aligns with how SPIFFE operates, focusing on assigning unique identities to each
workload, no matter how small, ensuring that even the smallest components within
a system are securely identifiable, supporting robust security practices in scenarios
where workloads are frequently spun up, moved, or terminated.

Summarizing, SPIFFE creates its standard of workload identification followed
by a cryptographically verifiable document employed with mutual authentication be-

22

tween peers. It happens with three major elements: standardization of an identity
namespace, imposes how an issued identity may be presented and verified, and spec-
ifies an API through which identity may be retrieved and/or issued by peers. These
components are known as (I) the SPIFFE ID; (II) the SVID; and (III) the Workload API
(FELDMAN et al., 2020):

(I) SPIFFE ID: is a string represented under the Uniform Resource Identifier (URI)
format (BERNERS-LEE; FIELDING; MASINTER, 2005) that uniquely and specif-
ically identifies a workload (SPIFFE, 2024b). This represents the core component
that starts the foundation of the SPIFFE framework. It comprises a "trust domain
name" followed by a workload identifier. The trust domain name is the authority
component, identifying the system in which a given identity is issued. The basic
scheme of a SPIFFE ID is as follows: spiffe://trust domain/workload identifier .
The trust domain corresponds to a system’s trust root and could represent an in-
dividual, organization, environment, or department running its own independent
SPIFFE infrastructure.

Each trust domain maintains its own cryptographic keys, which serve as the “root
of trust” for the domain, forming the cryptographic basis for verifying all identi-
ties issued within that domain. These keys are distributed in a standardized for-
mat called a “SPIFFE bundle”, which allows other systems and trust domains
to validate identities and establish trust relationships across domain boundaries.
This isolation model is crucial for maintaining security, as the compromise of one
trust domain does not affect others, enabling organizations to securely manage
identities across different environments or organizational units with independent
security boundaries.

It is highly recommended that trust domains be kept distinct for different envi-
ronments, such as staging and production, or for different organizational units,
to better manage security policies, limit the blast radius of potential security in-
cidents, and reduce risks associated with key compromise. For interoperability
considerations, SPIFFE states that implementations must support SPIFFE IDs
up to 2048 bytes in length, while it should not generate SPIFFE IDs of length
greater than 2048 bytes (SPIFFE, 2024b).

(II) SVID: is defined as the mechanism by which a workload proves its identity to a
resource or caller, much like a document (e.g., Carteira de Identidade Nacional)
that carries the identity of its presenter (such as a Cadastro de Pessoa Física in
Brazil or a Social Security Number in the United States). It must be resistant to
forgery and linked to the individual or entity presenting it. To achieve this, an SVID
incorporates cryptographic properties that verify its authenticity and confirm that it

23

belongs to the claimed presenter. An SVID is considered valid if an authority has
signed it within a SPIFFE trust domain, ensuring that only trusted entities within
the domain can issue or validate these documents. SVIDs define the essential
properties needed for identity verification and specify how the identity information
can be encoded and validated across different existing document formats rather
than being a specific document itself (SPIFFE, 2024b).

SVIDs support two main document types for identity representation: X.509 certifi-
cates (BOEYEN et al., 2008) and JWT tokens (JONES; BRADLEY; SAKIMURA,
2015b). Regardless of the format, issuing SVIDs implies an attestation process,
ensuring that only previously authorized workloads can acquire valid SVIDs through
designated API calls. Workloads use these identity documents for mutual au-
thentication, such as establishing an authenticated mutual Transport Layer Se-
curity (mTLS) connection with X.509 SVIDs or exchanging signed JWT SVIDs
within secure communication channels (SPIFFE, 2024b). Given the focus of this
work, we will exclusively examine the JWT SVIDs, leaving the details and use
cases related to X.509 certificates outside the scope of this discussion.

Each SVID carries at least a single SPIFFE ID declared in the subject claim and
a valid signature. The objective of the SVID is to represent the identity of the
service presenting it but also has space for an optional public key in the payload
section. The SPIFFE ID and the public key (if present) must be included in a
portion of the signed payload. If a public key is included, then the corresponding
private key is retained by the entity to which the SVID has been issued, and is
used to prove ownership of the SVID itself (SPIFFE, 2024b). For a JWT SVID,
Figure 2 illustrates the schema containing the mandatory claims:

Figure 2 – JWT SVID mandatory claims scheme.

SVID
Header
alg: string

Payload
sub: SPIFFE ID

aud: string
exp: integer

Signature

Source: The author.

JWT SVIDs are JSON Web Signature (JWS) data structures utilizing JWS com-
pact serialization, described as Uniform Resource Locator (URI) safe strings
(JONES; BRADLEY; SAKIMURA, 2015a). They follow the standard JWT token

24

with a handful of restrictions applied regarding the claim specifications (JONES;
BRADLEY; SAKIMURA, 2015b). The key claims define important identity at-
tributes and are essential for ensuring secure communication and proper vali-
dation. Each claim serves a specific purpose, helping to verify the workload’s
identity and control how the token is used within the system. Alg, or “algorithm”
claim, defines which types of algorithms are allowed. It follows all algorithms in
(JONES, 2015), specifically sections 3.3, 3.4, and 3.5. The sub claim, or “sub-
ject”, must be the SPIFFE ID of the workload to which it is issued, and here it is
the primary claim against which workload identity is asserted. Aud, or “audience”
claim, ensures that only certain authorized services or systems are intended to
read or process the identity information carried by the SVID. Lastly, exp, or “expi-
ration time” claim, indicates the exact time when the token becomes invalid.

(III) Workload API: provides information and services that enable workloads to lever-
age SPIFFE identities and SPIFFE-based authentication systems. It is served by
the SPIFFE Workload Endpoint, and comprises a number of services in the for-
mat of profiles. The JWT SVID profile provides a set of gRPC Remote Procedure
Call (gRPC) methods which workloads can use to retrieve JWT SVIDs and their
related trust bundles (SPIFFE, 2024b). In order to minimize exposure from a key
being leaked or compromised, all private keys are short-lived, rotated frequently,
and automatically requested upon the original SPIRE Server issuer.

In the SPIFFE framework, each workload is assigned a unique SPIFFE ID em-
bedded within an SVID to represent the workload’s identity securely. SPIRE, as an
implementation of SPIFFE, ensures that these identities are properly managed, ver-
ified, and distributed. To accomplish secure identity management, SPIRE relies on a
coordinated architecture that integrates identity issuance, verification, and distribution
at various levels. By enforcing SPIFFE standards, SPIRE enables workloads to dy-
namically obtain and renew their SVIDs, allowing for continuous authentication within
complex, multi-cloud, or containerized environments. The high-level view of this archi-
tecture contains two main components: the SPIRE Server and the SPIRE Agent. The
Server acts as a signing authority for identities, handles registration entries, performs
workload attestation through various plugins, and ensures secure distribution of SVIDs
to SPIRE Agents (FELDMAN et al., 2020). It also provides APIs, illustrated in Figure 3,
for managing identities and supports integration with external systems for scalable and
secure identity management.

The Figure 3 begins with the SPIRE Server starting up. If no UpstreamAu-
thority plugin is configured by the user, the server generates a self-signed certificate,
which is signed using its own private key. This certificate is used to sign SVIDs for all

25

Figure 3 – High level view of the SPIRE architecture.

HOST B

Workload API

Workload Workload Workload

WorkloadAttestor

NodeAttestor

SPIRE AgentSPIRE Server
HOST A

Node API

Key Manager

IDID IDCache

NodeAttestor Upstream
AuthorityData Store

Key Manager

SQL Server

Adapted from (FELDMAN et al., 2020).

workloads within the server ’s trust domain. During its first startup, the server automat-
ically creates a trust bundle and stores its contents in an SQL datastore specified in
the configuration.

Next, the SPIRE Agent starts up on the node where the workload is running,
initiating node attestation to verify the identity of its host node to the server. Following
this, the server performs additional attestation steps to gather more information about
the node, updating the node’s registration entries and issues an SVID to the agent,
representing the agent ’s identity. Using its SVID as a Transport Layer Security (TLS)
client certificate, the agent contacts the server to retrieve the registration entries it is
authorized for. The server verifies the agent ’s identity using the provided SVID and
completes an mTLS handshake, while the agent authenticates the server using the
bootstrap bundle. Lastly, when a workload requests an SVID via the Workload API,
the agent starts the workload attestation process by calling its workload attestors and
providing the process ID of the workload. These attestors use a combination of kernel
and user-space calls to collect additional details about the workload. The collected
information, known as workload selectors, is returned to the agent. By comparing the
discovered selectors with the registered entries, the agent determines the workload’s
identity and returns the appropriate SVID from its cache.

Having established the foundational concepts of ICAM frameworks and the
SPIFFE/SPIRE identity control plane for workloads, it becomes clear that while these
systems provide robust mechanisms for workload authentication and authorization,
they operate within distinct scopes. SPIFFE establishes specifications for distributed
workloads to send and receive messages while authenticating identity and asserting
message integrity, reasoning about workload identity and authentication in distributed
systems. However, the authentication context is currently limited to the workload’s iden-
tity directly sending or receiving a message, lacking methods and procedures to work
with end-users. This limitation presents challenges in scenarios where both user and

26

workload identities must be considered together, particularly in modern cloud-native
applications where user requests trigger workload operations across distributed mi-
croservices architectures. Understanding this gap between user-centric identity man-
agement (typically handled by external Identity Providers (IdPs) using protocols like
OAuth 2.0 and OpenID Connect) and workload-centric identity control planes (like
SPIFFE) is essential for appreciating the motivation behind extending SPIFFE’s ca-
pabilities to encompass richer authentication contexts that bridge these two domains.

2.2 MOTIVATION AND PROBLEM DEFINITION

The emergence of cloud-native architectures and microservice-based systems
has fundamentally transformed the landscape of distributed computing, introducing un-
precedented challenges in identity management and secure inter-service communica-
tion. Identity Management (IDM) systems facilitate the creation, verification, and revo-
cation of credentials and the attributes associated with the identity they represent, and
for this reason, they are commonly employed in federated environments composed of
different administrative domains that attribute different degrees of trust to each other
(MALER; REED, 2008). Traditional identity frameworks, originally designed for mono-
lithic applications and relatively static infrastructure, struggle to address the dynamic
nature of containerized workloads that are continuously created, migrated, and termi-
nated across heterogeneous computing environments. Taking advantage of the preva-
lence of federated models, new solutions based on similar credential concepts and
formats have been emerging in federated cloud environments. In particular, there has
been growing interest in investigating identity management systems suitable for dealing
with the high dynamism of virtualization architectures based on computing containers.

The identity control plane solution that is of particular interest in this project is
SPIFFE (SPIFFE, 2025b). As discussed in Section 2.1, SPIFFE’s solution is particu-
larly interesting for its use in cloud computing environments, in which multiple work-
loads must be mutually authenticated before establishing a secure connection and ex-
changing services. A distinctive feature of SPIFFE is that it only issues credentials for
workloads that have been attested (e.g., by agents positioned near the compute nodes
on which these workloads are executed), guaranteeing the workload’s provenance and
integrity. This approach reduces the need to pre-issue long-term static credentials for
processing workloads, thus avoiding the risk of security incidents due to the exposure
of such credentials to capture by attackers.

A core component of SPIFFE is the SVID, a short-lived identity document
that cryptographically binds a workload to a unique identifier inside a trusted domain
(SPIFFE, 2024b). Even though SPIFFE provides security and flexibility in cloud envi-
ronments, the context covered by SVIDs is limited to the identity of the workload directly

27

sending or receiving a message. In several applications, however, a richer authen-
tication context is desirable. This limitation, while maintaining architectural simplicity,
restricts SPIFFE’s applicability in scenarios where workloads must act on behalf of au-
thenticated users or where fine-grained authorization decisions require knowledge of
the complete request chain. Recognizing these constraints, the SPIFFE-IdT research
project was initiated to systematically investigate extensions to the SPIFFE framework
that could address these gaps without compromising its foundational security guaran-
tees.

This section contextualizes the present research within this broader initiative by
examining two complementary perspectives. Subsection 2.2.1 provides a comprehen-
sive overview of the SPIFFE-IdT project, documenting its three-year evolution through
distinct research phases that progressively expanded SPIFFE’s capabilities. It details
the collaborative engagement with the SPIFFE community, the creation of the “SPIFFE
- Assertions and Tokens Workgroup”, and the development of Delegated Assertion
SVID (DVID) for user identity delegation, the Nested Token model enabling extensible
authentication contexts, and the Lightweight SVID (LSVID) as a unified identity docu-
ment format. This historical account establishes the technical foundation upon which
this thesis builds, demonstrating both the significant achievements of the project and
the methodological approach employed throughout its execution.

Subsection 2.2.2 then transitions from accomplishments to challenges, explic-
itly identifying the critical gaps that emerged from the project’s implementation strategy.
While each research phase successfully demonstrated technical feasibility through in-
dependent PoCs, this approach resulted in fragmented codebases with substantial du-
plication, inconsistent deployment procedures that hinder reproducibility, and a com-
plete absence of evaluation under container orchestration—despite SPIFFE’s inher-
ent design for cloud-native environments. These shortcomings, though understand-
able within the exploratory context of the original project, represent significant barriers
to practical adoption and rigorous comparative analysis. This subsection articulates
these problems explicitly and formulates the specific research objectives that guide
this thesis: consolidating the disparate implementations into a unified, maintainable ar-
chitecture and systematically evaluating their operational feasibility and performance
characteristics under Kubernetes orchestration. Together, these subsections establish
both the substantial groundwork provided by the SPIFFE-IdT project and the precise
technical challenges that remain unresolved, thereby justifying the research direction
undertaken in this work.

28

2.2.1 Motivation: The SPIFFE-IdT Project

The research project entitled Gerenciamento seguro de identidades feder-
adas: aprimorando e estendendo a arquitetura SPIFFE (SPIFFE-IdT), conducted in
collaboration with Universidade do Estado de Santa Catarina (UDESC), Universidade
de São Paulo (USP), Instituto Federal Catarinense (IFC), and Hewlett Packard En-
terprise (HPE), is an exploratory study aimed at identifying opportunities to enhance
SPIFFE / SPIRE processes and technologies from multiple perspectives, particularly
in terms of security, performance, and functionality. The origins of the project are tied to
the efforts of the Special Interest Group SPIFFE Specification (SIG-Spec), an initiative
within the SPIFFE community focused on advancing the framework’s capabilities and
expanding its technical horizons (SPIFFE, 2024a). Meetings and discussions even-
tually led to its official start in 2021. Spanning three years (2021–2023), the project
involved the participants listed in Table 1 and was structured into annual phases. Each
year focused on addressing specific challenges and use cases while proposing innova-
tive solutions to enhance the framework’s applicability and functionality. Key milestones
of the project are illustrated in Figure 4, highlighting its initiation in August 2021, the an-
nual phases of work, and its conclusion in December 2023.

Figure 4 – SPIFFE-IdT Project timeline.

Phase 3 (1/23 - 12/23)

Phase 2 (4/22 - 12/22)

Phase 1 (8/21 - 3/22)

Lightweight SVID (LSVID)

A new identity document
based on the Nested Token

format

Nested Model

A flexible infrastructure for
creating, authenticating, and
extending arbitrary claims in

security tokens Delegated Assertion SVID
(DVID)

To enable support for non-
SPIFFE principals in the

context of SPIFFE-
authenticated messages

Prior 2021

SigSpec Group discussions

Source: The author.

Phase 1 (Subsection 2.2.1.1) main use case is the concept of authenticating
requests based on end-user identity. This work designed a new security document
named DVID, which produced two key outcomes for the author: (I) the author’s un-
dergraduate thesis titled “Análise de desempenho do Secure Production Identity
Framework for Everyone (SPIFFE)” at UDESC; and (II) the published paper “DVID:
Adding Delegated Authentication to SPIFFE Trusted Domains” (JESSUP et al.,

29

2024) presented at the Advanced Information Networking and Applications (AINA) con-
ference.

Phase 2 (Subsection 2.2.1.2) builds upon this foundational research by ad-
dressing use cases that fall outside the original SPIFFE scope. This phase focuses on
enhancing security measures by investigating a novel token model that incorporates a
nesting concept called Nested Token. The findings from this investigation resulted in
the published paper “Enhancing SPIFFE/SPIRE Environment with a Nested Secu-
rity Token Model.” (COCHAK. et al., 2024) at the International Conference on Cloud
Computing and Services Science (CLOSER).

Phase 3 (Subsection 2.2.1.3) converges all previously obtained results to cre-
ate a new security document named LSVID, which is utilized in a modified version
of SPIRE. This work resulted in the published paper “Lightweight SPIFFE Verifiable
Identity Document (LSVID): A Nested Token Approach for Enhanced Security and
Flexibility in SPIFFE” at the International Conference on Cloud Computing Technol-
ogy and Science (CLOUDCOM) (COCHAK et al., 2024).

Table 1 – Project list participants by year.
Participants Category / Title Participation Date
Charles Christian Miers Researcher 2021, 2022, 2023
Gabriel Dias Tambelli Undergraduate Student 2022, 2023
Henrique Zanela Cochak *** Undergraduate Student / Master Student 2021, 2022, 2023
Lucas Rodrigues Cupertino Cardoso Undergraduate Student 2022, 2023
Luís Henrique de Almeida Fernandes Undergraduate Student 2021
Marco Antonio Marques * Doctorate Student 2021, 2022, 2023
Marco Antonio Torrez Rojas Researcher 2021, 2022, 2023
Marcos Antonio Simplicio Junior ** Project Coordinator / Researcher 2021, 2022, 2023
Milton Pedro Pagliuso Neto *** Undergraduate Student / Master Student 2022, 2023
Pedro Henrique Barcha Correia Master Student 2022, 2023

Source: The author.

Note: * The project was conducted as part of Marco Antonio Marques’s doctorate thesis.
** Marcos Antonio Simplicio Junior served as both the project coordinator and researcher of the project.
*** Students who began as undergraduates and continued their academic journey into a Master’s pro-
gram within the project.

A central focus of this research is to evaluate mechanisms that enable the
identification of users making requests to workloads operating within its environment.
In this context, the project envisions that these identities, along with their associated
attributes, can be delegated (e.g., via a token) across different stages of request pro-
cessing, introducing the concept of transitive identity. Transitive identities are authen-
tications from trusted domains, in which these domains can again provide access to
other domains recursively (nowadays chosen by the industry as Federated Identity
(OKTA, 2024)).

Each participant in the project (Table 1) had key objectives to study or jobs
specified to carry out. My function in it was to code, debug, and most of all, discuss,

30

create, and generate a group of benchmarks of each phase, which again, resulted in
the published papers ((JESSUP et al., 2024), (COCHAK. et al., 2024) and (COCHAK
et al., 2024)). The baselines provided aim to generate a dataset that will serve as
a comparative line for developers aiming to implement the SPIFFE standard in their
applications, as well as for future applications that extend or adapt the project. As
detailed in Section 2.1, SPIFFE establishes specifications for distributed workloads
to authenticate identity and assert message integrity in distributed systems, but the
authentication context is currently limited to the workload’s identity directly sending or
receiving a message, lacking methods to work with end-users. The SPIFFE-IdT project
builds upon the foundational concepts of SPIFFE, addressing its limitations concerning
user-centric scenarios and expanding its scope beyond workload authentication. The
first result of this effort is the DVID.

2.2.1.1 SPIFFE IdT Project - Phase I - DVID

The goal of DVID is to enable support for non-SPIFFE principals in the context
of SPIFFE authenticated messages. The proposed framework allows a SPIFFE work-
load 𝑊 , called Subject Workload, to obtain a DVID in exchange for a credential issued
by an IdP related to an end user 𝑈 . The resulting JWT based document, issued by
an Asserting Workload, validates the end user token and binds together 𝑊 ’s and 𝑈 ’s
identities, asserting that 𝑊 is entitled to act on behalf of 𝑈 for a given period.

Inside a SPIFFE trust domain, the Asserting Workload may be considered a
TTP. However, when dealing with multiple security domains, the framework includes
mechanisms to prove token validity without revealing its contents using a Zero Knowl-
edge Proof (ZKP) (GOLDWASSER; MICALI; RACKOFF, 1989). This Rivest-Shamir-
Adleman (RSA)-based ZKP prevents token replay attacks and unauthorized privilege
escalation across trust domain boundaries.

The PoC benchmarks evaluated two key operations: minting (generating a
DVID) and validation (verifying its integrity and authenticity), both with and without
optional RSA-ZKP proofs. Performance metrics included CPU consumption, memory
consumption, and execution time, measured using Docker containers with constrained
resources (1 CPU core, 128MB RAM) and collected via Prometheus at 50-millisecond
intervals. The parameters are detailed in Table 2.

Table 2 – Phase 1 parameters.
Parameter Description
CPU Consumption Percentage of utilized CPU resources
Execution Time Time taken to complete key operations
Memory Consumption Percentage of utilized RAM resource

Source: (JESSUP et al., 2024).

The baseline measurements demonstrated that RSA-ZKP introduces signifi-

31

cant computational overhead for both minting and validation operations, with minimal
impact on CPU and memory consumption but substantial payload size increases that
could affect network performance in high-throughput environments. Detailed results are
presented in (JESSUP et al., 2024), providing a comparative framework for developers
implementing DVID and highlighting opportunities for optimization through alternative
cryptographic approaches.

2.2.1.2 SPIFFE IdT Project - Phase II - Nested Token Model

Building upon the DVID research, the Nested Token model was developed to
support diverse identity approaches and token extension capabilities, enabling delega-
tion, attenuation, and token sealing for more adaptable and fine-grained access control.
The recursive construction allows any workload to create or extend an existing token to
include new signed claims, enabling use cases where information integrity and tracking
are desirable while detecting potential tampering along the chain.

The solution supports two signature schemes: (I) ID-Mode, which leverages an
existing IdP where workloads obtain valid identity documents associated with their sig-
nature keys, allowing non-repudiable token creation and extension using their private
keys; and (II) Anonymous Mode, which uses an identity-based signature scheme with
Schnorr signature concatenation, where each workload extracts the aggregation key
from the previous signature to sign the new token, avoiding dependencies on external
authentication entities and reducing token size by maintaining only partial signatures
for all tokens except the last.

Benchmarks evaluated the same metrics as Phase 1, with the addition of Token
Size Growth to assess how token size varies with each concatenation (Table 3).

Table 3 – Phase 2 parameters.
Parameter Description
CPU Consumption Percentage of utilized CPU resources
Execution Time Time taken to complete key operations
Token Size Growth Size in bytes of each concatenated token
Memory Consumption Percentage of utilized RAM resource

Source: (COCHAK. et al., 2024).

Results demonstrated that Anonymous Mode achieved smaller token sizes due
to its signature concatenation mechanism, while ID-Mode exhibited lower validation
times at the cost of higher memory consumption from certificate storage and validation.
Comprehensive analysis and detailed results are presented in (COCHAK. et al., 2024).

2.2.1.3 SPIFFE IdT Project - Phase III - LSVID

The final phase focuses on developing the LSVID, an identity document build-
ing upon the nested token model to enhance the SPIFFE framework’s existing SVID.

32

The LSVID extends the nested token architecture, creating an identity document that
can be used as an extensible token for fine-grained access control mechanisms. Imple-
mentation required significant modifications to the SPIRE architecture, including new
endpoints for minting and validating the document, marking the first official integration
of this type within the framework.

Phase 3 centers on the ID-Mode, where SPIRE functions as a TTP, issuing
identity documents with valid signatures. In this mode, workloads obtain identity doc-
uments associated with their signature keys, enabling non-repudiable token creation
and extension. The LSVID structure comprises payload, signature, and nested compo-
nents, following a recursive model where tokens can be extended by appending new
signed claims. This enables use cases including delegation, attenuation, and path trac-
ing while maintaining cryptographic verification throughout the chain.

Benchmark evaluation focused on performance metrics detailed in Table 4,
selected to validate design goals through empirical data.

Table 4 – Phase 3 parameters.
Parameter Description
Execution Time Time taken to complete key operations
Token Size Growth Size in bytes of each concatenated token

Source: (COCHAK et al., 2024).

Results demonstrated that LSVID operations remain efficient for authentication
systems requiring low latency. Token size growth follows a predictable pattern with each
extension, influenced by the signature scheme and payload content. The document for-
mat using JavaScript Object Notation (JSON) and base64 encoding provides flexibility
while maintaining compact representation compared to alternatives requiring multiple
independent tokens. Comprehensive analysis and detailed results are presented in
(COCHAK et al., 2024).

2.2.2 Problem Definition

The SPIFFE-IdT project successfully demonstrated that SPIFFE’s scope can
be extended beyond workload-to-workload authentication to encompass richer authen-
tication contexts, including user identity delegation, extensible token chains, and fine-
grained authorization mechanisms. Each implementation proved technically feasible
through independent PoCs, delivering published research contributions and establish-
ing baseline performance metrics. However, this exploratory development approach,
while appropriate for validating novel cryptographic constructions and security proper-
ties, left questions about how the security documents would behave in environments
closer to actual deployment scenarios.

33

Each PoC was developed as a complete, standalone microservice application
comprising four architectural tiers: Subject-WL (entry point receiving external OAuth
tokens and front-end), Asserting-WL (security document minting and validation ser-
vice), one or more M-Tier components (acting as intermediary hops), and Target-WL
(backend resource server such as a database). While this modular architecture facili-
tated independent development during the project timeline, it resulted in four separate
codebases implementing fundamentally similar functionality with significant code du-
plication. Common components, including workload communication protocols, token
validation workflows, benchmark instrumentation, and Docker containerization config-
urations, were reimplemented independently for each security document type. This
fragmentation complicates testing and maintenance: each PoC runs as an indepen-
dent Docker Compose deployment with its own configuration, making it difficult to en-
sure consistent behavior across implementations despite their structural similarities.

The independent PoCs lack standardized deployment procedures, environ-
mental configurations, and dependency management strategies. Each implementa-
tion employs slightly different Docker Compose configurations, resource allocation poli-
cies, and network topologies, making it challenging for external researchers to repro-
duce experimental results accurately. Furthermore, deployment documentation varies
in completeness across the four implementations, creating barriers to validation by the
broader research community. This inconsistency undermines one of the project’s stated
objectives: establishing baseline performance metrics that can serve as comparative
references for developers implementing SPIFFE extensions. Without reproducible de-
ployment procedures and consistent environmental conditions, empirical comparisons
between security document types become unreliable.

All baseline measurements were conducted using Docker Compose for bare
container deployment, which provides direct container-to-container networking without
the service mesh abstractions, dynamic scheduling, and resource management poli-
cies characteristic of production Kubernetes environments. This represents a signifi-
cant gap in understanding real world deployment feasibility. Container orchestrators in-
troduce additional layers of abstraction, including service discovery mechanisms, load
balancing, health checks, and network policies that may affect performance charac-
teristics in ways not captured by bare-container benchmarks. Moreover, orchestrated
environments enable horizontal scaling and dynamic workload distribution, capabilities
that remain unexplored in the current PoC implementations.

This thesis addresses these identified gaps through two complementary re-
search objectives. First, the architectural consolidation objective unifies the four inde-
pendent PoCs into a single, maintainable prototype system that eliminates code dupli-
cation through shared service abstractions and modular security document handlers

34

while preserving the original functionality and cryptographic properties of all four im-
plementations. The unified system establishes standardized deployment procedures,
environmental configurations, and dependency management to ensure reproducibility,
and implements consistent benchmark instrumentation across all security document
modes, enabling rigorous comparative analysis under identical infrastructure condi-
tions.

Second, the orchestrated deployment evaluation objective investigates the de-
ployment of the unified prototype within Kubernetes environments, evaluating opera-
tional feasibility and performance impact. The operational feasibility investigation exam-
ines the extent to which SPIFFE-based security mechanisms integrate with container
orchestration abstractions (service discovery, configuration management), and identi-
fies what architectural or configurational adjustments are required for reliable opera-
tion across all security document modes. The performance impact analysis measures
the computational overhead introduced by orchestration layers, examining how these
abstractions affect critical performance metrics including latency, system throughput,
and resource consumption patterns. A comprehensive benchmarking methodology
systematically measures performance across both bare-container and Kubernetes-
orchestrated deployments, providing empirical evidence of the trade-offs inherent in
adopting container orchestration for SPIFFE-based identity management systems.

2.3 RELATED WORKS

The deployment of security microservices in orchestrated environments re-
quires understanding both the performance characteristics of orchestration platforms
themselves and the additional overhead introduced by security mechanisms integrated
into the service communication path. While extensive research exists on container or-
chestration performance comparison, a significant gap remains in understanding how
security document validation systems, particularly cryptographic identity, behave
when deployed under the abstractions and constraints of Kubernetes orchestration.
This section reviews the existing literature through two complementary lenses: (1) or-
chestration platform performance characteristics that establish baseline expectations
for deployment overhead, and (2) the operational implications of deploying security
enhanced microservices in orchestrated environments.

2.3.1 Search Methodology

To conduct a comprehensive review of container orchestration performance
research, a systematic search approach was employed using Google Scholar as the
primary search engine. The search was configured to span publications from 2018 to
2025, maintaining consistency with the timeframe established in previous work and en-

35

suring coverage of the period following SPIFFE’s acceptance into the CNCF in March
2018 (SPIFFE, 2025a). Two pre-configuration settings were applied: a custom date
range filter and the exclusion of citation only entries. The following search query was
formulated to identify relevant studies on container orchestration performance compar-
ison:

(" con ta ine r o r c h e s t r a t i o n " AND " performance ") AND
(" comparison " OR " eva lua t i on " OR " benchmark ") AND
(

(" k3s " AND " kubernetes ") OR
(" microk8s " AND " kubernetes ") OR
(" docker " AND " kubernetes ") OR
(" k3s " AND " microk8s ")

) AND
(" mon i to r ing " OR " workload " OR " resource ")

This query was designed to capture studies that evaluate container orchestra-
tion platforms from a performance perspective. The term “container orchestration" en-
sures focus on the deployment and management layer rather than individual container
technologies. The inclusion of “performance" combined with “comparison", “evalua-
tion", or “benchmark" targets studies that provide quantitative assessments rather than
purely architectural descriptions. The platform-specific terms focus the search on com-
parative studies involving Kubernetes and its lightweight distributions (K3s, MicroK8s)
as well as Docker-based orchestration. Finally, the terms “monitoring", “workload", and
“resource" ensure the inclusion of studies that measure observable system behavior
through instrumentation and metrics collection.

The search results were then filtered according to inclusion and exclusion cri-
teria to identify the most relevant studies for this research, as presented in Table 5.

Table 5 – Inclusion and exclusion criteria for related works.
Inclusion criteria Exclusion criteria
Scholarly literature such as articles, papers, and theses Books, slides, or project proposals
Documents written in English Documents written before 2018
Studies comparing container orchestration platforms Studies focusing solely on container runtime performance
Performance evaluation with quantitative metrics Purely theoretical or architectural discussions

Source: The author.

After applying these criteria, several key studies were identified that provide
relevant context for understanding container orchestration performance evaluation. Ta-
ble 6 presents a comprehensive overview of these studies, highlighting their approach
to platform comparison, security considerations, dependency handling, and workload
characteristics.

36

Table 6 – Comprehensive comparison of container orchestration performance and security studies.
Study Security

Focus
Platform Com-
parison

External Deps. Monitoring Ap-
proach

Real Work-
loads

(KOZIOLEK;
ESKANDANI,
2023)

None MicroK8s vs K3s
vs K0s vs Mi-
croShift

None k-bench + netdata No

(AQASIZADE;
ATAIE; BAS-
TAM, 2025)

None Kubeadm vs K3s
vs MicroK8s vs
K0s

Xen, Docker/-
Containerd

IOzone + Sysbench +
K6

Yes (MySQL,
OpenFaaS)

(BÖHM;
WIRTZ, 2021)

None Kubernetes vs
MicroK8s vs K3s

None CPU, memory, disk
monitoring

Yes (nginx)

(YAKUBOV;
HÄSTBACKA,
2025a)

None K0s vs K3s vs
KubeEdge vs
OpenYurt vs K8s

None CPU, memory, disk,
throughput

Mixed

(YAKUBOV;
HÄSTBACKA,
2025b)

Security
compliance

K0s vs K3s vs
KubeEdge vs
OpenYurt vs K8s

Network outage
sim.

kube-bench security
assessment

Yes

(RAMADAN et
al., 2025)

None K3s vs K3d vs
Kind vs MicroK8s
vs Minikube vs
K8s

None kube-burner stress
testing

No

(KOUKIS et al.,
2024)

None CNI plugins on
K3s, K0s, Mi-
croK8s

Multiple CNI Network throughput,
latency

Yes

(ČILIć et al.,
2023)

None K8s vs K3s vs
KubeEdge vs io-
Fog

None Startup/migration
times

Yes (edge)

(FAYOS-
JORDAN et
al., 2020)

None Docker Swarm vs
Kubernetes

None SBC monitoring Yes (IoT)

(BRAUN;
HOFFMANN;
MÖRSEBURG,
2019)

None Microservices vs.
Monolithic

None Response time,
throughput

Yes (Web
ARS)

(DIN et al.,
2022)

Network se-
curity

NDN-enabled ve-
hicular nodes

Yes (Edge and
Cloud)

Bandwidth and la-
tency

Yes (IoV mi-
croservices)

(BARLETTA et
al., 2025)

None Priority-based or-
chestration

Yes (5G Net-
works)

Orchestration latency Yes (Network
functions)

(PEDNEKAR et
al., 2024)

None Kubernetes vs
OpenShift

Yes (Different
hardware)

Workload perfor-
mance

Yes (Con-
tainerized
apps)

(PAPADOPOULOS,
2025)

Yes (API se-
curity)

K3s vs K0s vs Mi-
croK8s vs K8s

None Resource consump-
tion, performance

Yes (Edge
computing)

(ASCENSÃO et
al., 2024)

Yes (Secu-
rity compli-
ance)

K8s vs K3s vs
K0s

None Performance and se-
curity metrics

Yes

(KJORVEZIROSKI;
FILIPOSKA,
2022)

None K8s vs K3s vs Mi-
croK8s

Yes (Open-
FaaS)

Response time,
startup times

Yes (Server-
less func-
tions)

(TELENYK et
al., 2021)

None K8s vs MicroK8s
vs K3s

None Resource utilization,
startup speed

Yes

SPIFFE-IdT Project Contributions
(JESSUP et al.,
2024)

SPIFFE ext. No (Docker Com-
pose)

Yes (Okta) Prometheus Yes

(COCHAK. et
al., 2024)

SPIFFE ext. No (Docker Com-
pose)

Yes (Okta) Prometheus Yes

(COCHAK et
al., 2024)

SPIFFE ext. No (Docker Com-
pose)

Yes (Okta) Host-level Yes

This work SPIFFE uni-
fied

Docker vs K8s Yes (Google) Prometheus Yes

Source: The author.

(KOZIOLEK; ESKANDANI, 2023) conducted one of the most comprehensive
analyses of lightweight Kubernetes distributions, comparing MicroK8s, K3s, K0s, and
MicroShift. Their measurements revealed that K3s and K0s achieved the highest con-

37

trol plane throughput, with pod creation latencies ranging from 200ms to 470ms de-
pending on the distribution. These baseline latency measurements are critical for un-
derstanding orchestration overhead, particularly for security systems where identity
validation occurs on every service interaction. (BÖHM; WIRTZ, 2021) complemented
this work by profiling platforms across complete lifecycle events, demonstrating that
MicroK8s exhibited higher resource utilization and longer latencies for cluster opera-
tions that become critical when considering certificate rotation and workload attestation
cycles in SPIFFE-based systems.

(BRAUN; HOFFMANN; MÖRSEBURG, 2019) compared microservice and
monolithic architectures for web-based audience response systems, providing impor-
tant baseline performance differences between architectural patterns. (TELENYK et
al., 2021) analyzed performance metrics for orchestration actions in Kubernetes, Mi-
croK8s, and K3s, finding that standard Kubernetes outperformed lightweight alterna-
tives in most tests while K3s demonstrated better disk utilization. (PEDNEKAR et al.,
2024) conducted a comparative analysis of Kubernetes and OpenShift based on work-
loads using different hardware architectures, offering insights into platform selection
based on infrastructure constraints.

(AQASIZADE; ATAIE; BASTAM, 2025) investigated the impact of underlying
infrastructure by comparing virtualization modes and container runtimes, finding that
Docker outperformed Containerd in both disk and CPU intensive workloads. This is
particularly relevant for security document systems that perform frequent cryptographic
operations and certificate storage operations. (YAKUBOV; HÄSTBACKA, 2025a) ex-
tended the analysis to edge computing scenarios, demonstrating that K3s exhibited
the lowest resource consumption while K0s and standard Kubernetes excelled in data
plane throughput. (PAPADOPOULOS, 2025) further validated these findings by con-
ducting a comparative analysis of K3s, K0s, MicroK8s and K8s in edge computing
environments, emphasizing K3s and MicroK8s suitability for resourceconstrained de-
ployments.

(ČILIć et al., 2023) compared four orchestration tools (K8S, K3s, KubeEdge,
and ioFog) for edge computing environments, measuring container startup times, ser-
vice migration latencies, and memory consumption. Their results showed that Kuber-
netes achieved the best startup performance, while ioFog demonstrated significantly
higher startup times of over 34 seconds. (FAYOS-JORDAN et al., 2020) conducted a di-
rect performance comparison between Docker Swarm and Kubernetes on single-board
computers for fog computing scenarios, concluding that Docker Swarm outperformed
Kubernetes in resource-constrained environments. (KJORVEZIROSKI; FILIPOSKA,
2022) evaluated serverless computing performance using three different Kubernetes
distributions (Kubernetes, K3s, and MicroK8s) with the OpenFaaS platform, providing

38

valuable insights into edge deployment patterns for security-critical services.

(BARLETTA et al., 2025) investigated priority-based orchestration for 5G net-
work functions, measuring orchestration latency for real-world workloads with strin-
gent timing requirements. (KOUKIS et al., 2024) evaluated Container Network Inter-
face (CNI) plugins across lightweight distributions, revealing that plugin deployment
does not necessarily improve resource utilization. (RAMADAN et al., 2025) advanced
benchmarking methodology using kube-burner for stress testing. Din et al. (DIN et al.,
2022) implemented a microservices in-network computing framework for Information-
Centric IoVs, focusing on reducing latency and bandwidth consumption.

From a security perspective, only a small fraction of studies explicitly addressed
security concerns. (YAKUBOV; HÄSTBACKA, 2025b) evaluated security compliance
using kube-bench and resilience through network outage simulation, revealing that
lightweight distributions (K3s, K0s) offer superior performance but lower security com-
pliance compared to standard Kubernetes and specialized edge distributions. (AS-
CENSÃO et al., 2024) reinforced this finding by demonstrating that K0s achieved best
performance but exhibited security vulnerabilities comparable to standard Kubernetes.
These findings are significant for SPIFFE deployments, which implement application-
layer security, raising the question of whether platform-level security deficiencies are
adequately compensated by robust identity management.

SPIFFE-Based Artifact: The SPIFFE-IdT project has contributions (JESSUP
et al., 2024; COCHAK. et al., 2024; COCHAK et al., 2024) investigating SPIFFE capa-
bilities for enhanced authentication and authorization scenarios. These studies, which
are direct results of the SPIFFE-IdT project, explored SPIFFE extensions in container-
ized environments using Docker Compose deployments exclusively. The investiga-
tions focused on understanding the behavior and performance characteristics of novel
SPIFFE security artifacts, including delegated authentication documents, nested token
models, and lightweight encoding formats. Each project study conducted benchmark
measurements to evaluate computational overhead, network latency, and resource
consumption patterns introduced by these security enhancements during credential
generation, transmission, and verification processes.

However, these previous SPIFFE-IdT project investigations shared a common
limitation: all experiments were conducted exclusively on Docker Compose without
comparative analysis across orchestration technologies. The primary objective of these
project results was to validate the feasibility of the proposed SPIFFE extensions and
quantify their performance impact in isolation, demonstrating that enhanced security
mechanisms could operate within acceptable performance bounds. The SPIFFE-IdT
studies did not explore how different container orchestration platforms affect the per-
formance of these security-focused workloads, leaving a critical gap in understanding

39

orchestration-induced overhead on cryptographic identity validation systems.

2.4 CHAPTER CONSIDERATIONS

This chapter established the foundational concepts of cloud computing, mi-
croservices architecture, and the fundamentals of the SPIFFE ecosystem. Cloud com-
puting evolution has led to the widespread adoption of microservices architecture,
which introduces significant security challenges by distributing application logic across
multiple components, broadening the attack surface and increasing complexity in man-
aging identity and access control. To address these challenges, ICAM frameworks pro-
vide structured approaches for managing digital identities across distributed systems.
Within this context, SPIFFE emerges as a specialized IMS solution designed specifi-
cally for workloads in dynamic cloud environments. The SPIFFE framework creates a
standardized workload identification system through three core components: SPIFFE
ID (a URI-formatted unique identifier), SVID (a cryptographically verifiable identity doc-
ument), and the Workload API (for retrieving and validating credentials).

The SPIFFE-IdT project, initiated in 2021 as a collaboration between UDESC,
USP, IFC, and HPE, systematically extended SPIFFE’s capabilities through three an-
nual phases. Phase 1 introduced DVID to enable user identity delegation, allowing
workloads to act on behalf of authenticated users. Phase 2 developed the Nested
Token model to support more flexible identity approaches with delegation and atten-
uation capabilities. Phase 3 culminated in LSVID, a unified identity document for-
mat that integrated the advances from previous phases into a modified version of
SPIRE. These extensions addresses SPIFFE’s fundamental limitation, its restriction
to workload-to-workload authentication without support for end-user identity contexts.
Through these innovations, the project bridges the gap between workload-centric iden-
tity control planes and user-centric identity management systems.

The SPIFFE-IdT project successfully demonstrated that SPIFFE’s scope can
be extended beyond workload-to-workload authentication to encompass richer authen-
tication contexts, including user identity delegation, extensible token chains, and fine-
grained authorization mechanisms. While each implementation proved technically fea-
sible through independent PoCs deployments, the exploratory development approach
resulted in fragmented codebases with significant code duplication, with a lack of eval-
uation under container orchestration environments, despite SPIFFE’s inherent design
for cloud-native applications. By unifying the independent PoCs implementations into
a single architecture, this work eliminated code duplication, standardized deployment
procedures, and enabled a consistent benchmarking across all security document
types, preserving the distinct cryptographic properties of each implementation while
creating a foundation for a rigorous and easier comparative analysis under identical

40

infrastructure conditions.

Through empirical measurement across both Docker Compose and Kuber-
netes deployments, this research has quantified the orchestration overhead for security
document operations from the project. The findings provide evidence-based insights
into the trade-offs involved when deploying SPIFFE-based IMSs in orchestrated en-
vironments. These measurements establish a new basis for understanding how the
abstractions, introduced by Kubernetes with Minikube, may affect metrics such as la-
tency, and resource consumption.

41

3 PROPOSAL

This thesis proposes to investigate the operational feasibility and performance
characteristics of SPIFFE-based artifacts when deployed in container orchestrated en-
vironments. Specifically, this research examines how the security artifacts developed
under the SPIFFE-IdT project, originally implemented as four independent PoCs, be-
have when consolidated into a unified prototype and subjected to the abstractions and
overhead inherent in Kubernetes orchestration.

The central research questions driving this proposal are:

• Operational Feasibility: To what extent does the unified prototype integrate with
container orchestrators, and what architectural or configurational adjustments are
required to ensure reliable operation across all security document modes within
orchestrated environments?

• Performance Impact of Orchestration Abstraction: What measurable compu-
tational overhead does container orchestration introduce, and how do orchestration-
layer abstractions affect critical performance metrics including scalability, resource
utilization, inter-component latency, and overall system throughput?

Answering these questions requires two preliminary contributions: first, the ar-
chitectural consolidation of the four independent PoCs into a single coherent prototype;
and second, the deployment of this unified system within both baseline (Docker Com-
pose) and orchestrated (Kubernetes) environments to enable systematic comparative
analysis.

3.1 UNIFICATION OF SPIFFE-IDT MODELS

This master’s thesis represents a continuation of the research conducted under
the project Gerenciamento seguro de identidades federadas: aprimorando e es-
tendendo a arquitetura SPIFFE (SPIFFE-IdT), discussed in Subsection 2.2.1, though
with a fundamentally distinct research objective. Upon the advancements achieved
throughout the project’s three year duration, this work establishes a new direction fo-
cused on consolidation, systematic evaluation, and real-world deployment feasibility of
the developed security artifacts.

One of the core contributions enabling this investigation is the architectural uni-
fication of four independent PoCs into a single, coherent prototype system. As depicted
in Figure 5, each original PoC implemented a complete microservice architecture con-

42

sisting of four or more tiers: Subject-WL, Asserting-WL (security token service), one or
more M-Tier components (intermediaries), and Target-WL (backend resource server).
In this architecture, Subject-WL acts as the entry point, receiving external OAuth to-
kens from third-party identity providers. Asserting-WL serves as the internal identity
authority, minting all SPIFFE identity artifacts and participating in validation procedures
according to the specific security document mode. The M-Tier component(s) perform
mode-specific validation logic and forward authorized requests to Target-WL, which
executes operations after conducting final authorization checks.

Figure 5 – Architectural Unification: Consolidation of Four SPIFFE-IdT PoCs into a Single Integrated
Prototype.

Target-WL

M-Tier

Asserting-WL

Subject-WL

ID-MODE

M-Tier

Target-WL

Asserting-WL

Subject-WL

ANON-MODE

M-Tier

Target-WL

Asserting-WL

Subject-WL

LSVID

M-Tier

Target-WL

Asserting-WL

Subject-WL

M-Tier

Target-WL

Asserting-WL

DVID

Subject-WL

SPIFFE-IdT
This Work

Unification

Source: The author.

While this modular architecture facilitated independent development and val-
idation of distinct security document types, it resulted in significant code duplication,
inconsistent deployment procedures, and fragmented maintenance efforts across four
separate implementations. The unification process synthesizes these disparate imple-
mentations into an integrated architecture that preserves the functional capabilities of
all four security document modes while eliminating redundancy and establishing a stan-
dardized operational framework. This consolidation yields several critical advantages:

• Enhanced Reproducibility: A unified codebase with standardized deployment
procedures substantially reduces the complexity of reproducing experimental re-
sults, lowering the barrier for validation by independent researchers and facilitat-
ing knowledge transfer.

• Streamlined Maintenance and Benchmarking: Consolidating four separate im-
plementations into a single, well-structured system significantly simplifies long-
term maintenance, ensuring that improvements and security patches can be ap-

43

plied consistently across all security document types. Moreover, the unified ar-
chitecture facilitates systematic collection of benchmark data, as performance
metrics can be gathered under identical environmental conditions and using con-
sistent instrumentation across all modes, thereby enhancing the reliability and
comparability of empirical measurements.

• Systematic Comparative Analysis: The unified architecture establishes a con-
trolled experimental environment where different security document modes oper-
ate under identical infrastructure conditions, enabling rigorous performance com-
parisons and eliminating confounding variables introduced by implementation in-
consistencies.

Throughout the consolidation process, deliberate methodological restraint was
exercised to preserve the original design intent and core functionality of each PoC.
Modifications were introduced only where necessary to achieve integration, explicitly
avoiding the Ship of Theseus paradox wherein excessive alteration could fundamen-
tally compromise the authenticity and validity of the original artifacts (BARKER, 2019).
This approach ensures that benchmark results remain comparable to prior evaluations
conducted on the individual PoCs. Beyond consolidation, recognizing that SPIFFE is
inherently designed for cloud-native architectures, this research extends the unified
prototype to investigate deployment within container-orchestrated environments, intro-
ducing an additional analytical dimension examining the computational and operational
costs imposed by Kubernetes orchestration abstractions.

3.2 RELEVANT SCENARIOS

The transition of SPIFFE based identity management systems from develop-
ment environments to production grade deployments necessitates understanding their
behavior under container orchestration. While the SPIFFE-IdT project successfully en-
hanced SPIFFE capabilities through multiple security document implementations, cul-
minating in LSVID’s integration into the SPIRE framework, the operational characteris-
tics of these enhancements within orchestrated environments remain unexplored.

Container orchestration platforms, particularly Kubernetes, have become the
de facto standard for deploying cloud native microservices in production environments.
However, orchestration introduces multiple abstraction layers (e.g., service discovery
mechanisms, network proxies, scheduler overhead, resource management policies)
that fundamentally alter the performance profile of deployed applications. For security
critical systems like SPIFFE, where identity validation and cryptographic operations oc-
cur on the critical path of every service to service interaction, understanding the quan-

44

titative impact of these orchestration abstractions is essential for informed deployment
decisions.

This thesis addresses this gap by systematically benchmarking the unified
SPIFFE-IdT prototype across two deployment scenarios: a baseline Docker Compose
environment that minimizes orchestration overhead, and a Kubernetes orchestrated
environment introducing realistic production grade abstractions. The comparative anal-
ysis focuses on quantifying:

• Latency overhead introduced by Kubernetes networking layers (DNS resolution,
service mesh, iptables/netfilter routing) compared to direct container to container
communication. This measurement includes round trip times for authentication
requests, network path analysis, and potential bottlenecks in the identity verifica-
tion workflow.

• Resource utilization patterns under orchestration, including CPU and mem-
ory consumption attributable to Kubernetes components versus application work-
loads. This encompasses both steady state operation and peak utilization during
high frequency identity operations.

• Authentication and authorization delay specifically for identity minting and val-
idation operations in Kubernetes compared to the baseline environment. This
analysis examines the entire lifecycle of security document processing, from ini-
tial creation through validation and verification.

By establishing empirical baselines for these metrics, this research provides
actionable guidance for practitioners considering production deployment of SPIFFE
based identity systems, while contributing quantitative data to inform future optimiza-
tions of both SPIFFE implementations and Kubernetes networking architectures.

3.3 TESTBED

The experimental evaluation deploys the unified SPIFFE-IdT prototype across
two testbed configurations to systematically compare baseline container performance
against orchestration-induced overhead. Both testbeds implement the same microser-
vice architecture derived from the consolidation process, preserving the core workload
components and communication patterns established during the SPIFFE-IdT project.

3.3.1 Workload Architecture

The deployed system consists of four primary workload types that collectively
implement the SPIFFE-based federated identity flow. Although the communication pat-

45

terns between these workloads were established through prior research (JESSUP et
al., 2024; COCHAK. et al., 2024; COCHAK et al., 2024), the consolidation and or-
chestration deployment may introduce architectural adjustments while preserving core
functionality. The fundamental components are:

1. Subject Workload: Serves as the application front-end, initiating authentica-
tion requests and interacting with external OAuth identity providers (e.g., Okta,
Google). This workload receives external OAuth tokens and forwards them to the
Asserting Workload for validation and SPIFFE identity issuance.

2. Asserting Workload (Local IdP): Functions as the internal identity authority re-
sponsible for issuing and validating SPIFFE security documents. Upon receiving
validated OAuth credentials from the Subject Workload, it mints SPIFFE-IdT se-
curity artifacts and participates in subsequent validation procedures according to
the configured security document mode.

3. Middle Tier: One or more intermediary workloads that enforce authorization poli-
cies and perform mode-specific validation logic. These components introduce
additional communication hops between the front-end and the database data re-
trieval

4. Target Workload: The backend resource server that executes protected oper-
ations (e.g., database queries) after all security validations are completed. This
workload represents the ultimate destination for authenticated and authorized re-
quests.

While specific communication flows will vary depending on the selected secu-
rity document, later on explained, the presence of these four workload types remains
consistent across all experimental scenarios. Each workload exposes both functional
endpoints and observability endpoints (Prometheus metrics) to enable performance
monitoring during evaluation.

3.3.2 Hardware Specifications

All experiments were conducted on a bare metal server with the following spec-
ifications: GNU/Linux Ubuntu 24.04.2 LTS, 500 GiB RAM, and dual Intel Xeon E5-2690
v2 processors operating at 3.00 GHz (20 physical cores across 2 sockets, 40 threads
with hyper-threading). This configuration provides more than sufficient computational
resources to eliminate hardware bottlenecks and isolate orchestration platform over-
head as the primary performance variable.

46

3.3.3 Testbed Configurations

Two distinct testbed configurations were deployed on the same physical hard-
ware to ensure hardware-independent comparison, as illustrated in Figure 6. The ar-
chitectural differences between these configurations directly impact service discovery
and inter-container communication patterns.

Figure 6 – Testbeds design.

Ubuntu

Docker

Subject-WL Target-WL
SPIRE

Server

SPIRE

Agent

Prometheus

GrafanaAsserting-WLM-Tier

(a) Docker Compose Testbed.

K8S Cluster
Control Plane

CoreDNS

DNS Caching & Service Resolution
kube-proxy kindnet CNI

Pod

Subject-WL

Pod

Target-WL

Pod

Prometheus

Pod

Grafana

Pod

SPIRE

Server

SPIRE

Agent

Ubuntu

Docker

Pod

M-Tier

Pod

Asserting-WL

Minikube VM

K8S Cluster

(b) Kubernetes Testbed.

Source: The author.

The Docker Compose testbed, depicted in Figure 6a, deploys services directly
on the host operating system using Docker’s native container runtime. All workload con-
tainers (Subject-WL, Asserting-WL, Middle-Tier, and Target-WL) run alongside SPIRE
infrastructure components within the same Docker environment. This configuration rep-
resents a baseline deployment scenario with minimal orchestration overhead.

In contrast, the Kubernetes testbed shown in Figure 6b consists of a single-
node Minikube cluster with 10 CPU cores allocated, running within a Docker con-
tainer on the same bare metal host. The SPIFFE components (SPIRE Server and
SPIRE Agent) are deployed alongside application workloads (Subject-WL, Asserting-
WL, Middle-Tier, and Target-WL), with each component running as an independent
pod. Each pod is allocated a single dedicated CPU resource to ensure performance
isolation and eliminate scheduling interference.

Workloads access SPIFFE identities through the Workload API, exposed via a
Unix domain socket at /run/spire/sockets/agent.sock (SPIFFE, 2025c). This socket is
written to the host filesystem by the SPIRE Agent and mounted into workload pods via

47

Kubernetes hostPath volumes (Kubernetes, 2025). Unix domain socket communication
occurs through the host node’s filesystem and constitutes Inter-Process Communica-
tion (IPC) rather than network-based communication (Kubernetes CSI, 2024).

Both testbed configurations incorporate a comprehensive observability infras-
tructure based on Prometheus and Grafana, as illustrated in Figure 7. This monitor-
ing stack enables systematic performance analysis across all workload components
and facilitates comparative evaluation of different security document modes under con-
trolled conditions.

Figure 7 – Prometheus metrics collection and Grafana visualization.

Subject-WL Asserting-WL Target-WLM-Tier

Prometheus

Grafana

:7440/metrics :7443/metrics :7444/metrics :7445/metrics

TSDB

store

visualization

scrape

Source: The author.

Prometheus (PROMETHEUS, 2025) serves as the metrics collection and stor-
age backend, leveraging its pull-based scraping model that is particularly suited for
MSAs. Each workload component in the unified architecture exposes dedicated met-
rics endpoints, and serve metrics in Prometheus’s standardized exposition format via
HTTP /metrics paths. The Prometheus server scrapes application workload endpoints
every 100 ms to capture fine-grained performance data during benchmark execution.
This high-frequency scraping enables precise latency measurements and throughput
analysis without requiring instrumentation changes to the application code. The col-
lected time-series data is stored in Prometheus’s local Time Series Database (TSDB),
with the pull-based architecture decoupling metrics collection from application logic to
ensure minimal monitoring overhead that does not interfere with benchmark measure-
ments.

Grafana (LABS, 2025) provides the visualization layer, querying Prometheus’s
TSDB using PromQL to construct real-time dashboards displaying performance indi-
cators. These visualizations enable both real-time monitoring during benchmark ex-
ecution and post-hoc analysis, supporting the comparative performance evaluation

48

presented in subsequent chapters. The observability infrastructure operates indepen-
dently of application workloads across both Docker Compose and Kubernetes envi-
ronments, ensuring metrics collection does not introduce measurement bias while pro-
viding comprehensive visibility into the behavior of all security document modes under
evaluation.

Beyond the instrumentation and deployment infrastructure described above,
careful attention was given to external dependencies that could introduce measure-
ment variability. A notable difference between this evaluation and prior SPIFFE-IdT
assessments (JESSUP et al., 2024; COCHAK. et al., 2024; COCHAK et al., 2024)
concerns the external OAuth IdP configuration. Previous evaluations utilized Okta as
the OAuth provider, as specified by the SPIFFE-IdT project requirements. However,
Okta’s infrastructure is geographically distant from our testbed location, with OAuth
validation requests likely routed to servers in the US-East region, resulting in round-trip
times of 100 ms or more for token validation operations.

For this study, we transitioned to Google OAuth (https://accounts.google.com)
as the identity provider to eliminate this source of network latency variability. Network
analysis via IPv6 address resolution (2800:3f0:4001:814::200a) and GeoIP lookup con-
firms JSON Web Key Sets (JWKS) requests are routed to Google’s southamerica-
east1 datacenter in São Paulo, Brazil, significantly reducing geographic distance com-
pared to the previous Okta configuration. This geographically proximate identity provider
eliminates intercontinental routing variability, ensuring that measured latencies reflect
actual cryptographic and orchestration overhead rather than network propagation de-
lays. Consequently, our measurements focus exclusively on the performance charac-
teristics inherent to each security document mode and the orchestration-induced over-
head introduced by the deployment environment, without confounding factors from ge-
ographically distant external services.

3.4 CHAPTER CONSIDERATIONS

This chapter established the methodological foundation for evaluating SPIFFE-
IdT security artifacts within container-orchestrated environments. The architectural uni-
fication of four independent PoCs into a single coherent prototype enables system-
atic comparative analysis across security document modes under identical infrastruc-
ture conditions, eliminating implementation inconsistencies that could confound per-
formance measurements. By deploying this unified system across both Docker Com-
pose and Kubernetes testbeds on identical hardware, the research framework isolates
orchestration-induced overhead as the primary performance variable while maintaining
functional equivalence with prior SPIFFE-IdT evaluations.

49

The testbed infrastructure provides observability through Prometheus metrics
collection and Grafana visualization, enabling performance analysis across all work-
load components. The transition from geographically distant OAuth providers (Okta in
US-East) to geographically proximate identity services (Google in São Paulo) ensures
that measured latencies reflect cryptographic and orchestration overhead rather than
network propagation delays. This controlled experimental environment establishes the
necessary conditions to answer the research questions concerning operational fea-
sibility and performance impact of deploying SPIFFE-based artifacts within container
orchestration platforms.

50

4 EXPERIMENTS AND DATA ANALYSIS

Before presenting the experimental method and empirical results, it is essential
to describe the technical implementation of the architectural unification discussed in
Chapter 3. While Chapter 3 established the motivation and benefits of consolidating
the four independent PoCs, this chapter begins by detailing how this consolidation was
achieved through a router-based architecture that preserves the functional capabilities
of all security document modes while eliminating code duplication.

4.1 IMPLEMENTATION OF THE UNIFIED ARCHITECTURE

The consolidation of the four SPIFFE-IdT PoCs into a single coherent prototype
required a fundamental redesign of the request dispatching mechanism. In the original
implementations, each security document mode operated as a completely independent
deployment with dedicated Subject-WL, Asserting-WL, M-Tier, and Target-WL com-
ponents. The unified architecture, illustrated in Figure 8, transforms this fragmented
deployment model into an integrated system through a two-tier routing structure: a
configuration-driven dispatcher at the Subject-WL and a subrouter-based handler reg-
istry at the Asserting-WL.

Figure 8 – Unified PoC architecture with router based mode.

Subject-WL

OAuth

Provider

/dvid

/id-mode

/anon-mode

/lsvid

Asserting-WL

/dvid/*

/id-mode/*

/anon-mode/*

/lsvid/*

M-Tier

/dvid/*

/id-mode/*

/anon-mode/*

/lsvid/*

/mint

Target-WL

/dvid/*

/id-mode/*

/anon-mode/*

/lsvid/*

/balance

/balance

Source: The author.

51

4.1.1 Mode Selection at Subject-WL

The Subject-WL serves as the user-facing entry point for authentication flows.
The unified web interface provides four mode-selection buttons. When a user clicks
a button, the browser issues a request to a mode-specific path and the function han-
dler inspects the request path and queries a configuration map to retrieve the mode-
specific configuration. The configuration map associates each URL path with its cor-
responding Asserting-WL endpoint (e.g., /dvid/mint, /id-mode/ecdsa-assertion, /anon-
mode/schnorr-assertion, /lsvid/extendlsvid) and an internal mode identifier. This declar-
ative configuration approach improves maintainability by eliminating conditional branch-
ing throughout the codebase.

Once the configuration is retrieved, the handler invokes the appropriate mode-
specific request function. Each function establishes an mTLS connection to the Asserting-
WL and forwards the user’s OAuth token to the mode-specific endpoint. This architec-
ture isolates mode-specific logic within dedicated functions while enabling all modes
to share common infrastructure for mTLS establishment, error handling, and response
processing. The handler also manages session state by storing the selected mode in
both server-side session storage and a client-side cookie, ensuring consistent routing
across subsequent user interactions.

4.1.2 Middle-Tier Subrouter Architecture

The Asserting-WL is responsible for minting and validating security documents,
and must expose distinct endpoints for each security document mode while operating
as a unified deployment. The unified architecture implements this through a hierarchi-
cal routing structure that enables path prefix isolation between modes. The main router
initializes four mode-specific subrouters, each associated with a distinct path prefix cor-
responding to one of the security document modes: /dvid, /id-mode, /anon-mode, and
/lsvid. Within each subrouter, mode-specific handlers are registered for the operations
supported by that security document type.

When the Asserting-WL receives a request, the main router examines the URL
path prefix to determine which subrouter should handle it. This hierarchical routing
structure ensures complete isolation between security document modes: each mode’s
handlers execute independently and have no visibility into the state or behavior of other
modes, preserving functional equivalence with the original independent PoCs. The
same subrouter-based routing logic is implemented in both the M-Tier and Target-WL
components, ensuring consistent request dispatching throughout the entire multi-tier
architecture.

52

4.1.3 Functional Preservation and Execution Flow

The router-based consolidation strategy preserves the core cryptographic op-
erations, validation procedures, and document formats implemented in the original
PoCs. Each mode-specific handler package encapsulates the complete implemen-
tation of its corresponding security document, maintaining the fundamental logic es-
tablished in prior research. While the underlying cryptographic primitives remain un-
changed, the unification process introduces additional validation steps and error han-
dling mechanisms to prevent failures, a critical consideration in microservice architec-
tures.

While the unified architecture employs consistent routing mechanisms across
all security document modes, the execution flow varies significantly depending on the
validation procedures specific to each mode. The system exhibits two distinct exe-
cution focal points: the minting process, where initial security artifacts are generated
and bound to user identities, and the validation process, where these documents are
extended, verified, and used to authorize access to protected resources across the
multi-tier architecture.

For the purposes of this master thesis, we focus on these two main functional
operations, minting and validation, explained in detail in subsequent sections. The pri-
mary research interest lies in identifying possible discrepancies in CPU and memory
consumption of the new unified baseline compared to the original isolated implemen-
tations within the Minikube environment. Additionally, this work aims to capture and
analyze the performance characteristics of each assertion mode under the unified ar-
chitecture to establish a comprehensive performance baseline to understand the im-
pact of the usage of orchestration.

4.1.3.1 Minting Process

The minting process is triggered when a user successfully authenticates with
the external Google IdP and the authorization callback handler receives the OAuth
token. At this stage, all four security document modes follow an identical execution
flow: the Subject-WL extracts the OAuth token from the callback, stores it in the ap-
plication environment, and invokes the unified handler that inspects the user’s mode
selection. The handler then establishes an mTLS connection to the Asserting-WL and
forwards the OAuth token to the mode-specific minting endpoint. As illustrated in Fig-
ure 9, for DVID, ID-Mode, and Anon-Mode, the minting flow is straightforward: the
Subject-WL sends the OAuth token to the Asserting-WL, which validates the token,
mints the corresponding security document, and transmits it back for local storage.

53

Figure 9 – Minting process flow.

OAuth Token

OAuth Token

Asserting

Workload

Subject

Workload

Notation:

LSVID

SPIRE

Agent

Fetch LSVID

LSVID

LSVID

Mint Security

Document

Extend

LSVID

Security

Document

Fetch LSVID

LSVID

Source: The author.

LSVID mode introduces additional operations involving the SPIRE Agent. Before con-
tacting the Asserting-WL, the Subject-WL fetches its existing LSVID from the SPIRE
Agent, extends it with a payload targeting the Asserting-WL, and transmits both the
OAuth token and the extended LSVID to the Asserting-WL. The Asserting-WL vali-
dates the OAuth token, fetches its own LSVID from the SPIRE Agent, and extends the
received LSVID by adding OAuth delegation claims, completing the chain of trust that
the Subject-WL subsequently stores.

4.1.3.2 Validation Process

The validation process begins when the user initiates an operation requir-
ing access to protected resources, in this implementation, requesting account bal-
ance information from the Target-WL. This process traverses the complete architecture
(Subject-WL → M-Tier → Target-WL) and exhibits divergence across security docu-
ment modes due to their distinct validation procedures and token extension mecha-
nisms, as illustrated in Figures 10, 11, and 12.

In DVID mode (Figure 10), the Subject-WL directly forwards the security doc-
ument during the minting to the M-Tier without modification. The M-Tier validates the
DA-SVID through two sequential operations: first, it contacts the Asserting-WL’s valida-
tion endpoint (/dvid/validate) to verify the signature and expiration; second, it retrieves a
ZKP via the introspect endpoint (/dvid/introspect) to verify OAuth token validity without
the Asserting-WL exposing the token itself. Following successful validation, the M-Tier
forwards the unchanged security document to the Target-WL, which performs an addi-
tional validation step with the Asserting-WL before executing the database query and
returning the result.

54

Figure 10 – DVID validation flow.

/validate

DVID

DVID

result

/introspect

result

/validate

result

User data

Middle

Tier

Target

Workload

Asserting

Workload

Subject

Workload

Source: The author.

ID-Mode and Anon-Mode (Figure 11) share a common structural flow through
the architecture. The Subject-WL receives an assertion from the Asserting-WL, ex-
tends it, and forwards it to the M-Tier. The M-Tier performs validation, extends the as-
sertion again, and forwards it to the Target-WL. The Target-WL validates the complete
assertion chain, optionally calls the Asserting-WL’s introspect endpoint for additional
verification, and executes the database query. Detailed information about the valida-
tion and extension mechanisms employed by each mode are described in the related
work (COCHAK. et al., 2024).

Figure 11 – ID-Mode and Anon-Mode validation flows.

Assertion

fetch SVID

User data

Middle

Tier

Asserting

Workload

Subject

Workload

SPIRE

Agent

SVID

Extend

Assertion
Assertion

Target

Workload

Validate
/introspect

response

Source: The author.

LSVID mode (Figure 12) implements nested token extension with bearer verifi-
cation. The Subject-WL fetches both its X.509-SVID and LSVID token from the SPIRE
Agent, constructs a payload containing its identity and the user information, extends
the LSVID by nesting and signing, and transmits it to the M-Tier. The M-Tier vali-
dates the signature chain, performs bearer verification by confirming the mTLS cer-

55

tificate matches the LSVID issuer claim, then fetches its own identities from the SPIRE
Agent and extends the LSVID again before forwarding to the Target-WL. The Target-
WL validates the complete signature chain, performs bearer verification, and queries
the local database without external calls to the Asserting-WL, as validation is entirely
self-contained through the nested structure.

Figure 12 – LSVID validation flow.

Assertion

User data

Middle

Tier

Subject

Workload

Mod SPIRE

Agent

Validate

Target

Workload

Fetch SVID, LSVID

SVID, LSVID

Fetch SVID, LSVID

SVID, LSVID

Extend
Assertion

Validate

Source: The author.

4.1.4 Connection Pooling Analysis Across Assertion Modes

Connection pooling constitutes a performance optimization technique that en-
ables the reuse of existing mTLS connections rather than establishing new connections
for each request. This approach significantly reduces the computational and network
overhead associated with TCP handshakes, TLS certificate exchanges, and crypto-
graphic negotiations (SHARIFIAN et al., 2019).

Establishing a new mTLS connection requires multiple round-trip communica-
tions: TCP handshake, TLS negotiation, certificate exchange and validation, SPIRE
Agent interaction to fetch current SVIDs, and key agreement. Connection pooling elim-
inates some of these steps for subsequent requests. The cumulative effect across high-
volume workloads can be substantial, particularly for modes like DVID where multiple
sequential calls occur per request. As shown in Table 7, the four assertion modes im-
plement connection pooling based on their architectural requirements. In DVID mode,
connection pooling is implemented exclusively at the M-Tier, which maintains persis-
tent connection pools to the Asserting-WL for validation and introspect operations, and

56

to the Target-WL for forwarding authenticated requests. Each user request necessi-
tates multiple sequential calls (validation, introspect, Target-WL query), making pool-
ing particularly beneficial as it avoids three complete mTLS handshakes per request.
The Target-WL creates fresh connections for each request, prioritizing implementation
simplicity over performance optimization.

Table 7 – Connection Pooling Summary.
Mode M-Tier Pools To Target-WL Pools To
DVID Asserting-WL, Target-WL (none)
ID-Mode Target-WL Asserting-WL
Anon-Mode (none) Asserting-WL
LSVID Target-WL (none)

Source: The author.

ID-Mode implements connection pooling at both the M-Tier and Target-WL,
representing the most comprehensively optimized mode. The M-Tier maintains pooled
connections to the Target-WL, while the Target-WL maintains pooled connections to the
Asserting-WL for introspect operations when enabled. This bilateral pooling strategy
ensures that both the primary forwarding path and the secondary validation path ben-
efit from connection reuse, proving particularly valuable in high-throughput scenarios.
LSVID mode implements connection pooling exclusively at the M-Tier for forwarding ex-
tended tokens to the Target-WL. Unlike other modes where Target-WL communicates
with Asserting-WL, LSVID validation is entirely self-contained through local validation
and bearer verification via mTLS certificate inspection, and database queries.

Table 7 summarizes the connection pooling strategies across the four asser-
tion modes, reflecting distinct design philosophies from ID-Mode’s comprehensive opti-
mization to Anon-Mode’s emphasis on implementation simplicity. Understanding these
trade-offs proves essential for selecting the appropriate assertion mode for specific
deployment scenarios and performance requirements.

4.2 DATA ANALYSIS AND RESULTS

This section presents a comparative analysis of resource consumption met-
rics between Docker Compose and Kubernetes deployments across the four asser-
tion modes. Comprehensive performance measurements were collected for CPU and
memory usage during both minting and validation operations. For MSA, the metrics
collected thus far did not matter as expected for the current intent, and the addition of
an orchestration layer did not provide any kind of overhead when related to compu-
tational resource consumption as initially anticipated. These findings suggest that the
observed variations in performance metrics are more likely application-related rather
than attributable to the underlying architecture. The CPU utilization data reveals inter-
esting patterns across deployment environments and operational modes. Figures 13

57

and 14 illustrate the distribution of CPU consumption for minting and validation opera-
tions respectively.

Figure 13 – CPU usage comparison for minting operations across assertion modes

asserting−wl subject−wl

anonm
ode

dvid
idm

ode
lsvid

Docker Kubernetes Docker Kubernetes

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

C
P

U
 U

sa
ge

 (
%

)

environment Docker Kubernetes

MINTING CPU Usage (%)

Source: The author.

Figure 14 – CPU usage comparison for validation operations across assertion modes

asserting−wl m−tier subject−wl target−wl

anonm
ode

dvid
idm

ode
lsvid

Docker Kubernetes Docker Kubernetes Docker Kubernetes Docker Kubernetes

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

C
P

U
 U

sa
ge

 (
%

)

environment Docker Kubernetes

VALIDATION CPU Usage (%)

Source: The author.

58

For minting operations, contrary to initial expectations, Kubernetes deploy-
ments consistently showed lower CPU utilization compared to Docker Compose across
all assertion modes. This finding aligns with observations from (FERREIRA; SINNOTT,
2019), who reported that managed Kubernetes services often exhibited better perfor-
mance than manually configured environments (FERREIRA; SINNOTT, 2019). Table 8
shows that for subject workloads, CPU usage remained fairly consistent across modes
(13.56-13.69% for Docker vs. 11.43-11.91% for Kubernetes). The asserting workload
showed more pronounced differences, with Docker consuming between 8.62-19.99%
CPU compared to Kubernetes at 5.78-14.79%. It should be noted that although CPU
utilization varies, this variability is partly attributable to the Prometheus scraping inter-
val, which was set to 100ms for this thesis. This interval was chosen because typical
operations occur within 10-50ms, making 100ms a reasonable monitoring window. This
sampling rate may influence the visual representation of CPU behavior in the collected
data.

Table 8 – CPU Usage for Minting Operation - Docker vs Kubernetes (%).

Workload
CPU Usage (%) - Minting

DVID ID-Mode Anon-Mode LSVID
Docker K8s Docker K8s Docker K8s Docker K8s

subject-wl 13.69 ± 2.23 11.91 ± 2.86 13.65 ± 2.24 11.43 ± 2.77 13.64 ± 2.29 11.54 ± 2.81 13.56 ± 2.27 11.46 ± 2.76
asserting-wl 19.99 ± 2.94 14.79 ± 2.28 11.15 ± 2.72 7.50 ± 1.50 11.08 ± 2.76 7.64 ± 1.51 8.62 ± 2.40 5.78 ± 1.24

Source: The author.

Validation operations exhibited a similar pattern, as shown in Table 9, with
Kubernetes deployments consistently utilizing 15-35% less CPU resources than their
Docker counterparts. Notably, the asserting workload under DVID showed the high-
est overall CPU consumption (27.67% ± 3.84% for Docker vs. 19.75% ± 2.97% for
Kubernetes), which aligns with its more complex validation requirements. The M-tier
workload demonstrated the smallest difference between environments (typically 15-
20% reduction in Kubernetes), suggesting that its processing tasks are less affected
by the deployment environment.

Table 9 – CPU Usage for Validation Operation - Docker vs Kubernetes (%).

Workload
CPU Usage (%) - Validation

DVID ID-Mode Anon-Mode LSVID
Docker K8s Docker K8s Docker K8s Docker K8s

subject-wl 13.58 ± 2.24 11.93 ± 2.92 13.60 ± 2.24 11.55 ± 2.74 13.67 ± 2.24 11.56 ± 2.74 13.62 ± 2.24 11.54 ± 2.69
asserting-wl 27.67 ± 3.84 19.75 ± 2.97 18.57 ± 3.40 12.76 ± 2.54 16.03 ± 3.04 10.93 ± 2.18 13.01 ± 2.34 8.85 ± 1.80
m-tier 19.99 ± 2.94 17.46 ± 3.87 17.01 ± 2.68 14.43 ± 3.34 15.00 ± 2.59 12.80 ± 3.02 13.11 ± 2.38 11.14 ± 2.78
target-wl 21.47 ± 3.47 15.46 ± 2.63 18.49 ± 3.25 12.76 ± 2.48 16.46 ± 2.93 11.45 ± 2.14 13.16 ± 2.42 8.74 ± 1.78

Source: The author.

In contrast to CPU metrics, memory consumption patterns revealed an inverse
relationship between Docker Compose and Kubernetes. Figures 15 and 16 visualize
these differences.

59

Figure 15 – Memory usage comparison for minting across assertion modes

asserting−wl subject−wl
anonm

ode
dvid

idm
ode

lsvid

Docker Kubernetes Docker Kubernetes

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

M
em

or
y

U
sa

ge
 (

M
B

)

environment Docker Kubernetes

MINTING Memory Usage (MB)

Source: The author.

Figure 16 – Memory usage comparison for validation across assertion modes

asserting−wl m−tier subject−wl target−wl

anonm
ode

dvid
idm

ode
lsvid

Docker Kubernetes Docker Kubernetes Docker Kubernetes Docker Kubernetes

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

M
em

or
y

U
sa

ge
 (

M
B

)

environment Docker Kubernetes

VALIDATION Memory Usage (MB)

Source: The author.

Table 10 shows that for minting operations, Kubernetes deployments consis-
tently consumed more memory than Docker Compose across all modes and work-

60

loads. The difference is most pronounced in DVID mode, with Kubernetes using ap-
proximately 25-37% more memory (e.g., subject-wl: 26.16 ± 3.38 MB in Docker vs.
35.91 ± 3.07 MB in Kubernetes). However, as TURIN et al. note, “memory is time inde-
pendent" in container systems, with memory being "acquired and released" rather than
continuously consumed like CPU resources (TURIN et al., 2023). This fundamental dif-
ference in resource management suggests that the observed memory variations might
be related to application-specific behaviors rather than inherent orchestration platform
characteristics.

Table 10 – Memory Usage for Minting Operation - Docker vs Kubernetes (MB).

Workload
Memory Usage (MB) - Minting

DVID ID-Mode Anon-Mode LSVID
Docker K8s Docker K8s Docker K8s Docker K8s

subject-wl 26.16 ± 3.38 35.91 ± 3.07 24.78 ± 2.37 31.85 ± 3.63 23.96 ± 2.25 28.95 ± 2.33 19.89 ± 2.17 24.32 ± 1.73
asserting-wl 33.01 ± 3.69 41.48 ± 3.53 23.66 ± 2.89 29.77 ± 2.12 25.35 ± 2.50 27.21 ± 2.29 21.50 ± 2.50 24.89 ± 1.58

Source: The author.

Validation operations display similar memory consumption patterns as shown
in Table 11. Kubernetes deployments used 15-30% more memory across all workloads
and modes. The target-wl component exhibited the highest memory requirements in
both environments, particularly for DVID and ID-Mode (e.g., DVID target-wl: 34.93 ±
3.00 MB in Docker vs. 40.90 ± 3.27 MB in Kubernetes). This aligns with TURIN et al.’s
fundamental observation that “memory is time independent" in container systems, with
memory being “acquired and released" rather than continuously consumed like CPU
resources. Their research demonstrates that this memory management model leads
to different resource allocation patterns than CPU utilization, explaining our consistent
observation of higher memory usage in Kubernetes across all test scenarios. Further-
more, they observed that “containers and pods affect each other’s consumption and
performance when running on the same machine", which explains why these memory
patterns remain consistent despite the architectural differences between deployment
environments.

Table 11 – Memory Usage for Validation Operation - Docker vs Kubernetes (MB).

Workload
Memory Usage (MB) - Validation

DVID ID-Mode Anon-Mode LSVID
Docker K8s Docker K8s Docker K8s Docker K8s

subject-wl 33.30 ± 2.39 36.10 ± 3.12 30.88 ± 2.86 35.63 ± 2.84 19.01 ± 1.69 23.31 ± 2.05 17.22 ± 1.75 19.77 ± 1.83
asserting-wl 28.66 ± 2.63 33.26 ± 2.71 27.44 ± 2.41 30.54 ± 2.29 21.90 ± 2.05 24.98 ± 1.98 17.02 ± 2.17 21.28 ± 1.48
m-tier 30.81 ± 2.59 39.07 ± 2.94 28.16 ± 2.54 33.15 ± 2.21 24.45 ± 2.77 29.46 ± 1.94 20.37 ± 1.96 24.49 ± 1.30
target-wl 34.93 ± 3.00 40.90 ± 3.27 33.75 ± 2.92 38.68 ± 3.03 25.26 ± 2.63 31.14 ± 2.40 23.32 ± 2.74 27.26 ± 2.00

Source: The author.

Examining the standard deviations across all measurements reveals signifi-
cant overlap between Docker Compose and Kubernetes distributions. While mean val-
ues consistently show differences, the standard deviation ranges indicate that these
differences are often within the same statistical distribution. For example, in CPU us-
age for validation operations, the Asserting-wl in Anon-Mode shows Docker at 16.03 ±
3.04% vs. Kubernetes at 10.93 ± 2.18%. Despite the 5.1 percentage point difference

61

in means, the overlapping distributions suggest the difference may not be statistically
significant for individual requests. This statistical overlap supports TURIN et al.’s con-
clusion that resource consumption patterns are highly application-dependent rather
than solely determined by the orchestration platform.

Contrary to initial expectations of higher computational overhead in Kuber-
netes due to orchestration complexity, the data shows that Kubernetes deployments
consistently consumed less CPU while requiring more memory. This apparent para-
dox is supported by FERREIRA; SINNOTT’s comparative study of managed Kuber-
netes services, which found that these environments often “instead of introducing over-
heads, provide performance improvements" for certain operations. Their research con-
firms that resource performance variations are substantially driven by the underlying
infrastructure and application behavior rather than by Kubernetes itself. This finding
challenges the conventional assumption that additional orchestration layers necessar-
ily increase computational burden, suggesting instead that Kubernetes’ sophisticated
scheduling algorithms may optimize CPU utilization at the cost of higher memory allo-
cation for infrastructure components.

The consistent pattern across all four assertion modes indicates that the un-
derlying deployment architecture has a more significant impact on resource utilization
than the specific assertion method. DVID mode showed the highest resource consump-
tion in both environments, consistent with its more complex validation flow and multiple
connection requirements. LSVID consistently demonstrated the lowest resource foot-
print, aligning with its design goal of local validation and reduced network communi-
cation. These results corroborate TURIN et al.’s methodology for predicting resource
consumption, which emphasizes that workload characteristics and deployment archi-
tecture are more determinative of resource utilization than orchestration overhead.

The violin plots in Figures 13 through 16 visually confirm the substantial over-
lap in the distribution shapes between Docker and Kubernetes environments, sup-
porting the assertion that while differences exist, they remain within similar statistical
ranges. This finding is particularly significant for deployment planning, as it suggests
that migration between container orchestration environments may not fundamentally
alter the expected resource utilization profile of the system.

4.2.1 Network Performance Analysis

In addition to CPU and memory metrics, network performance represents a
critical dimension for understanding the impact of orchestration platforms on security-
focused microservices. Through fine-grained instrumentation of token minting and val-
idation workflows across the unified PoC with multiple security documents (DVID, ID-
Mode, Anon-Mode, LSVID), we demonstrate that orchestration overhead exhibits sig-

62

nificant heterogeneity depending on operation characteristics and connection manage-
ment strategies.

Token minting performance exhibits moderate orchestration overhead with sig-
nificant variation across identity modes. Kubernetes deployments consistently demon-
strate higher mean execution times compared to Docker Compose across all modes,
though the magnitude of overhead varies considerably depending on the cryptographic
operations involved.

Table 12 – Token Minting execution time cost (ms).
Mode Deploy Total Highest Operation % from total
DVID Compose 59.35 ± 11.57 Zkp generation: 30.65 ± 3.24 51.6%
DVID K8s 63.98 ± 21.11 Zkp generation: 30.60 ± 15.54 47.8%

IDMODE Compose 16.99 ± 3.86 Jwks http fetch: 15.07 ± 2.83 88.7%
IDMODE K8s 21.50 ± 4.81 Jwks http fetch: 19.54 ± 3.68 90.9%

ANONMODE Compose 18.21 ± 2.26 Jwks http fetch: 14.46 ± 1.73 79.4%
ANONMODE K8s 22.68 ± 3.23 Jwks http fetch: 18.75 ± 2.44 82.7%

LSVID Compose 17.14 ± 115.30 Jwks http fetch: 16.43 ± 115.30 95.9%
LSVID K8s 18.25 ± 15.79 Jwks http fetch: 17.52 ± 15.74 96.0%

Source: The author.

For DVID mode, which employs ZKP generation for delegated identity, minting
requires 59.35 ± 11.57 ms on Docker Compose versus 63.98 ± 21.11 ms on Ku-
bernetes, representing a 7.8% increase in mean time. ZKP generation dominates the
minting process in both platforms, accounting for approximately 51.6% of total time in
Docker Compose and 47.8% in Kubernetes.

ID-Mode and Anon-Mode exhibit more pronounced orchestration overhead,
with increases of 26.6% (16.99 ms to 21.50 ms) and 24.5% (18.21 ms to 22.68 ms)
respectively. In both modes, JWKS HTTP fetching dominates execution time, repre-
senting 88.7%-90.9% for ID-Mode and 79.4%-82.7% for Anon-Mode. This external
service dependency amplifies the impact of Kubernetes networking abstractions. Each
JWKS fetch must traverse kube-proxy iptables/netfilter rules, cluster Domain Name
System (DNS) resolution, and service virtual IP routing layers absent in Docker Com-
pose’s direct bridge networking.

LSVID mode demonstrates the smallest absolute orchestration overhead (6.5%
increase from 17.14 ms to 18.25 ms) but exhibits exceptionally high variability in Docker
Compose (standard deviation of 115.30 ms). This anomalous variance likely stems
from intermittent external service latency during JWKS fetching, which constitutes 95.9%-
96.0% of total execution time. The high percentage indicates that LSVID minting is
almost entirely constrained by external service performance rather than internal pro-
cessing.

Validation performance must be analyzed by understanding the architectural
relationship between M-Tier and Target workloads. The M-Tier service acts as an inter-

63

mediary that validates incoming tokens and then forwards requests to the Target back-
end service. Consequently, the "Target workload request" operation visible in Table 13
represents the complete execution time of the Target workload shown in Table 14.

Table 13 – Validation execution time cost - M-Tier workload (ms).
Mode Deploy Total Highest Operation % from total
DVID Compose 109.07 ± 2.41 Target workload request: 100.79 ± 2.18 92.4%
DVID K8s 109.92 ± 20.19 Target workload request: 101.58 ± 19.91 92.4%

IDMODE Compose 42.80 ± 2.46 Target workload request: 41.42 ± 2.45 96.8%
IDMODE K8s 42.89 ± 15.39 Target workload request: 41.50 ± 15.39 96.8%

ANONMODE Compose 103.53 ± 2.27 mTLS client setup: 100.30 ± 2.20 96.9%
ANONMODE K8s 126.23 ± 34.66 mTLS client setup: 122.99 ± 34.64 97.4%

LSVID Compose 2.25 ± 0.43 Target connect: 1.01 ± 0.20 44.9%
LSVID K8s 2.36 ± 0.57 Target connect: 1.10 ± 0.37 46.6%

Source: The author.

For DVID validation, the M-Tier workload requires 109.07 ms (Compose) and
109.92 ms (K8s), with the Target workload request consuming 100.79 ms and 101.58
ms respectively, representing 92.4% of total M-Tier time. This indicates that M-Tier
validation overhead (token validation, forwarding logic) accounts for only 8-9 ms, while
the majority of latency stems from the Target service.

Table 14 – Validation execution time cost - Target workload (ms).
Mode Deploy Total Highest Operation % from total
DVID Compose 100.79 ± 2.18 mTLS client setup: 97.45 ± 2.13 96.7%
DVID K8s 101.58 ± 19.91 mTLS client setup: 98.34 ± 19.89 96.8%

IDMODE Compose 41.42 ± 2.45 Introspect call: 40.90 ± 2.44 98.7%
IDMODE K8s 41.50 ± 15.39 Introspect call: 40.98 ± 15.41 98.7%

ANONMODE Compose 2.59 ± 0.31 Introspect call: 1.59 ± 0.30 61.4%
ANONMODE K8s 2.62 ± 0.68 Introspect call: 1.58 ± 0.63 60.3%

LSVID Compose 0.63 ± 0.16 Lsvid validation: 0.42 ± 0.11 66.7%
LSVID K8s 0.63 ± 0.22 Lsvid validation: 0.42 ± 0.19 66.7%

Source: The author.

Examining Table 14, we see that DVID Target processing is dominated by
“mTLS client setup" (96.7%-96.8% of total time), which involves retrieving X.509 cer-
tificates from the SPIRE Workload API and configuring mTLS. Despite this establish-
validate-teardown pattern, orchestration overhead remains minimal in mean time (0.8%
increase for both M-Tier and Target). However, Kubernetes exhibits substantially higher
variability with a 8-10× variance increase.

Similar patterns emerge with ID-Mode validation, with M-Tier times of 42.80
ms (Compose) and 42.89 ms (K8s), where Target workload requests account for 41.42
ms and 41.50 ms (96.8% of M-Tier time). The orchestration overhead remains minimal
at 0.2%-0.7%, but Kubernetes again shows significantly higher variability (15.39 ms
standard deviation versus 2.45-2.46 ms for Compose).

64

Figure 17 – M-Tier ANONMODE validation.

0ms (0%)

2.6ms (2.5%)

0ms (0%)

0ms (0%)

0ms (0%)

100.3ms (96.9%)

0.4ms (0.4%)

0.2ms (0.2%)

0ms (0%)

0ms (0%)

2.6ms (2.1%)

0ms (0%)

0ms (0%)

0ms (0%)

123ms (97.4%)

0.4ms (0.3%)

0.2ms (0.1%)

0ms (0%)

Token extraction

Final json encoding

Svid operations

Response processing

Token parsing signature

Public key generation

New assertion generation

Target workload request

Mtls client setup

0 50 100 150
Time (ms)

O
pe

ra
tio

n

Deployment compose k8s

Source: The author.

Anon-Mode validation exhibits the most substantial orchestration impact and
provides critical insight into connection establishment costs. As shown in Figure 17,
Anon-Mode was intentionally configured without connection pooling to isolate the over-
head of repeated mTLS handshakes. M-Tier time increases 22.0% from 103.53 ms
(Compose) to 126.23 ms (K8s). The dominant operation is “mTLS client setup" (96.9%-
97.4% of M-Tier time), which requires 100.30 ms (Compose) versus 122.99 ms (K8s)—a
22.6% increase.

Each connection establishment must traverse the full Kubernetes service mesh
stack: DNS resolution via CoreDNS, service virtual IP lookup, kube-proxy iptables/net-
filter rule evaluation, and pod network routing through the CNI plugin. In contrast,
Docker Compose connections utilize direct container-to-container networking on the
Docker bridge network, bypassing these intermediate layers entirely.

The critical insight is that Anon-Mode’s orchestration sensitivity stems entirely
from repeated M-Tier connection establishment overhead, not from Target process-
ing complexity or validation logic. By comparing Anon-Mode (no pooling, 22.6% mTLS
setup overhead) against DVID (with pooling, 0.8% Target connect overhead), we quan-
tify that connection pooling reduces orchestration overhead by approximately 21.8%.
This reveals that connection establishment, specifically the repeated traversal of Ku-

65

bernetes networking layers, represents the primary source of orchestration-induced
performance degradation for inter-service communication.

LSVID validation shows minimal orchestration overhead across both tiers. M-
Tier validation requires 2.25 ms (Compose) versus 2.36 ms (K8s)—a 4.9% increase
with Target connection establishment accounting for 1.01 ms and 1.10 ms (44.9%-
46.6% of M-Tier time). Target validation itself is extremely lightweight at 0.63 ms for
both platforms. The identical performance across platforms suggests that when cryp-
tographic operations are lightweight and connections are pooled, orchestration archi-
tecture has negligible impact on validation latency.

Figure 18 – DVID minting performance breakdown.

0ms (0.1%)

9.3ms (15.7%)

0ms (0%)

0.6ms (1%)

1.4ms (2.4%)

0ms (0%)

1.5ms (2.5%)

14.9ms (25.1%)

0.5ms (0.8%)

0.3ms (0.5%)

0ms (0%)

0ms (0.1%)

0.1ms (0.2%)

30.6ms (51.7%)

0ms (0.1%)

9.5ms (14.8%)

0ms (0%)

0.6ms (0.9%)

1.5ms (2.4%)

0ms (0%)

1.5ms (2.4%)

19.3ms (30.1%)

0.5ms (0.8%)

0.3ms (0.5%)

0ms (0%)

0ms (0%)

0.1ms (0.2%)

30.6ms (47.8%)

Data preparation

Svid fetching

Issuer validation

Token extraction

Client cert processing

Token validation

Signature verification

Key loading

File operations

File writing

Json encoding

Dasvid minting

Jwks http fetch

Zkp generation

0 10 20 30
Time (ms)

O
pe

ra
tio

n

Deployment compose k8s

Source: The author.

Our evaluation reveals three key findings with respect to network performance:

• First, operations involving mTLS connection establishment without connection
pooling experience the most substantial orchestration overhead. Anon-Mode val-
idation, which performs repeated mTLS handshakes without connection reuse,
exhibits 22.6% higher mean latency under Kubernetes compared to Docker Com-
pose, with each connection traversing Kubernetes’ multi-layer networking stack.

• Second, connection pooling effectively mitigates orchestration overhead: modes
employing connection reuse (DVID, ID-Mode, LSVID) demonstrate minimal mean

66

latency differences (0.8%-4.9% increases), as the connection establishment cost
is amortized across multiple requests. This is clearly demonstrated in Figure 18
for DVID minting operations, where despite complex cryptographic operations,
the connection overhead remains minimal.

• Third, Kubernetes consistently exhibits 2–10× higher performance variability com-
pared to Docker Compose across all modes, even when mean latencies remain
similar. This increased jitter stems from the dynamic nature of Kubernetes net-
working components (pod scheduling, iptables rule evaluation, CNI routing deci-
sions) and represents a fundamental characteristic of the platform rather than a
transient artifact.

These findings represent a conservative lower bound for orchestration over-
head, as our evaluation used Minikube’s minimal networking configuration without ad-
vanced features such as network policies, service meshes, or overlay networks. Pro-
duction Kubernetes deployments with more sophisticated networking stacks would
likely exhibit greater overhead, particularly for security-intensive workloads requiring
frequent cryptographic operations and service-to-service communication.

4.3 CHAPTER CONSIDERATIONS

The analysis of resource consumption across Docker Compose and Kuber-
netes deployments provides key insights into containerized microservice performance.
Computational resources (CPU and memory) show minimal impact from orchestra-
tion platform choice, with differences being more application-related than architecture-
dependent. The performance cost is effectively distributed across the cluster, with Ku-
bernetes control plane services having negligible impact on application workloads.

Our investigation across different security token modes revealed that network
performance is where Kubernetes introduces significant overhead, particularly for op-
erations requiring multiple connections. DVID mode with its complex validation flow
showed the greatest sensitivity to orchestration platform, though connection pooling at
the M-Tier effectively reduced the overhead to just 0.8%. ID-Mode’s bilateral connec-
tion pooling strategy demonstrated the most comprehensive performance optimization,
maintaining minimal orchestration overhead (0.2-0.7%) despite its complex validation
chain. Anon-Mode, intentionally configured without connection pooling, exhibited the
highest orchestration sensitivity (22.6% increase in mTLS setup time), providing criti-
cal insight into the cost of repeated connection establishment. LSVID’s lightweight de-
sign and pooled connections resulted in extremely efficient validation (4.9% overhead)
and the lowest absolute execution times of any mode, confirming that self-contained
cryptographic approaches can minimize network overhead.

67

These findings demonstrate that connection pooling serves as the essential
optimization technique for microservices in Kubernetes, reducing orchestration over-
head by approximately 21.8% when comparing non-pooled operations against pooled
ones. Each security token mode’s performance characteristics were primarily deter-
mined by its connection management strategy rather than by the inherent complexity
of its cryptographic operations, suggesting that network architecture decisions have
greater performance impact than the choice of orchestration platform itself.

68

5 CONSIDERATIONS & FUTURE WORK

This master’s thesis represents the culmination of an exceptionally challenging
and often frustrating. The unification process proved to be an extremely tenuous under-
taking, substantially more complex than initially anticipated, requiring comprehensive
refactoring of four PoCs. More than significant time was invested in understanding the
nuanced interactions between components, reconstructing the original design intent,
and implementing a router-based architecture that preserved functional equivalence
while eliminating redundancy. The development process was particularly challenging.
Debugging the unified implementation revealed unexpected edge cases and integra-
tion challenges that were not apparent in the isolated deployments. Many weeks were
spent troubleshooting subtle issues with certificate handling and token propagation
across the microservice tiers.

Initial performance testing yielded results that were not exactly as expected,
somewhat defying our hypotheses about orchestration overhead and necessitating
deeper investigation into networking patterns and connection management strategies.
This investigative pivot ultimately yielded our most significant insight: that connection
pooling effectively neutralizes Kubernetes orchestration overhead, providing a 21.8%
performance improvement compared to non-pooled operations.

The benchmarking methodology itself presented unexpected challenges that
required significant adjustments. The initial approach attempted to collect performance
metrics directly within the application code, instrumenting key functions to measure
execution times and resource utilization. However, this approach quickly proved prob-
lematic. Benchmarking within the application itself made the results unreliable, since
the measurement process consumed computational resources that the application
needed. As a result, the benchmark and the application competed for the same re-
sources, introducing significant noise and distorting the data.

This realization necessitated a complete redesign of the benchmarking strat-
egy. The solution involved implementing a containerized Prometheus instance as an
external observer, completely separate from the application under test. This approach
eliminated the resource contention issue by ensuring the monitoring infrastructure op-
erated independently from the application components. Prometheus periodically scraped
metrics from application endpoints without interfering with normal operation, providing
more reliable and consistent measurements. This methodology proved effective across
both Docker Compose and Kubernetes environments, enabling valid comparison be-
tween deployment models.

69

A notable finding from this research concerns the limitations of CPU and mem-
ory metrics when evaluating microservice architectures. While these metrics provided
valuable insights in previous SPIFFE-IdT phases, they proved less informative in the
orchestrated environment. In microservices, performance bottlenecks often stem from
network communication, service discovery delays, and connection management rather
than computational resource constraints. Services might show minimal CPU utiliza-
tion while experiencing significant end-to-end latency due to these distributed factors.
This suggests that request flow metrics and service interaction patterns provide more
meaningful performance indicators for security document validation in microservice ar-
chitectures than traditional resource utilization measurements.

During the course of this master’s thesis research, the author contributed sig-
nificantly to the academic literature, resulting in the publication of five peer-reviewed
papers:

• Jessup, A., Cochak, H. Z., Koslovski, G. P., Pillon, M. A., Miers, C. C., Correia,
P. H. B., Marques, M. A., & Simplicio, M. A. (2024). DVID: Adding Delegated
Authentication to SPIFFE Trusted Domains. In L. Barolli (Ed.), Advanced Infor-
mation Networking and Applications (pp. 289–300). Springer Nature Switzerland.

• Cochak, H., Neto, M., Miers, C., Marques, M., & Simplicio Jr., M. A. (2024). En-
hancing SPIFFE/SPIRE Environment with a Nested Security Token Model.
Proceedings of the 14th International Conference on Cloud Computing and Ser-
vices Science - CLOSER, 184-191.

• Cochak, H. Z., Miers, C. C., Correia, P. H. B., Marques, M. A., & Simplicio, M. A.
(2024). Lightweight SPIFFE Verifiable Identity Document (LSVID): A Nested
Token Approach for Enhanced Security and Flexibility in SPIFFE. 2024 IEEE
International Conference on Cloud Computing Technology and Science (Cloud-
Com), 9-16.

• Cardoso, L. C., Marques, M. A., Correia, P. H. B., Cochak, H. Z., Miers, C. C., &
Simplicio, M. A. (2025). Next-Generation SPIFFE/SPIRE Identity Management
Systems with Post-Quantum Cryptography Algorithms. IEEE 25th Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid), 154-163.

• Cochak, H. Z., Miers, C. C., Marques, M. A., & Simplicio, M. A. (2025). Container
Orchestration Impact on SPIFFE Identity Artifacts: A Performance Analysis
of Docker vs Kubernetes. 16th IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom).

70

Through this discovery and the comprehensive unification work, this research
successfully concludes the three-year SPIFFE-IdT project, consolidating into a uni-
fied architecture with reproducible deployment procedures. Future work could explore
the development of new security documents incorporating post-quantum cryptographic
algorithms, addressing the emerging threat of quantum computing to current crypto-
graphic foundations. Particularly promising avenues include lattice-based schemes like
CRYSTALS-Kyber or FALCON, and hash-based signatures like SPHINCS+.

Building upon our connection pooling findings, further research could examine
horizontal scalability under high-volume workloads, leveraging Kubernetes’ autoscaling
capabilities to dynamically adjust resource allocation based on authentication demand
patterns. Integrating the unified prototype with advanced service mesh technologies
like Istio could provide additional security enforcement layers while potentially mitigat-
ing the connection establishment overhead identified in our research. Extending the
performance analysis to distributed multi-node Kubernetes clusters would provide in-
sights into how geographic dispersion affects identity validation latencies, particularly
relevant for global-scale deployments.

71

BIBLIOGRAPHY

ABOBA, D. B. D.; WOOD, J. Authentication, Authorization and Accounting (AAA)
Transport Profile. RFC Editor, 2003. RFC 3539. (Request for Comments, 3539).
Disponível em: <www.rfc-editor.org/info/rfc3539>.

ALLIANCE, C. S. CSA Security Guidance for Critical Areas of Focus in Cloud
Computing. 2023. <https://cloudsecurityalliance.org/research/guidance/>.

AQASIZADE, H.; ATAIE, E.; BASTAM, M. Kubernetes in action: Exploring the perfor-
mance of kubernetes distributions in the cloud. Software: Practice and Experience,
Wiley, 2025. Published online: 2 July 2025.

ASCENSÃO, P. et al. Assessing kubernetes distributions: A comparative study. In:
2024 IEEE International Conference on Cloud Computing Technology and Sci-
ence (CloudCom). [S.l.]: IEEE, 2024.

BARKER, S. Identity, persistence, and the ship of theseus. Philosophy Compass,
2019.

BARLETTA, M. et al. Slo-aware orchestration for 5G network functions and microser-
vices. Journal of Network and Systems Management, 2025. In press.

BERNERS-LEE, T.; FIELDING, R. T.; MASINTER, L. M. Uniform Resource Identifier
(URI): Generic Syntax. RFC Editor, 2005. RFC 3986. (Request for Comments, 3986).
Disponível em: <https://www.rfc-editor.org/info/rfc3986>.

BOEYEN, S. et al. Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile. RFC Editor, 2008. RFC 5280. (Request for
Comments, 5280). Disponível em: <www.rfc-editor.org/info/rfc5280>.

BÖHM, S.; WIRTZ, G. Profiling lightweight container platforms: Microk8s and k3s in
comparison to kubernetes. In: ZEUS. [S.l.: s.n.], 2021. p. 65–73.

BRAUN, I.; HOFFMANN, M.; MÖRSEBURG, R. Implementation of a web-based audi-
ence response system as microservice application vs monolithic application. MONO-
LITHIC APPLICATION, 2019.

COCHAK., H. et al. Enhancing spiffe/spire environment with a nested security token
model. In: INSTICC. Proceedings of the 14th International Conference on Cloud
Computing and Services Science - CLOSER. [S.l.]: SciTePress, 2024. p. 184–191.
ISBN 978-989-758-701-6. ISSN 2184-5042.

COCHAK, H. Z. et al. Lightweight spiffe verifiable identity document (lsvid): A nested
token approach for enhanced security and flexibility in spiffe. In: 2024 IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom).
[S.l.: s.n.], 2024. p. 9–16.

DIN, M. S. U. et al. A testbed implementation of microservices-based in-network com-
puting framework for information-centric iovs. In: IEEE. 2022 IEEE International Con-
ference on Consumer Electronics-Asia (ICCE-Asia). [S.l.], 2022. p. 1–5.

www.rfc-editor.org/info/rfc3539
https://cloudsecurityalliance.org/research/guidance/
https://www.rfc-editor.org/info/rfc3986
www.rfc-editor.org/info/rfc5280

72

FAYOS-JORDAN, R. et al. Performance comparison of container orchestration plat-
forms with low cost devices in the fog, assisting internet of things applications. Journal
of Network and Computer Applications, 2020.

FELDMAN, D. et al. Solving the Bottom Turtle — a SPIFFE Way to Establish Trust
in Your Infrastructure via Universal Identity. 1. ed. 2020. ISBN 978-0-578-77737-5.

FERREIRA, A. P.; SINNOTT, R. A performance evaluation of containers running on
managed kubernetes services. In: IEEE. 2019 IEEE international conference on
cloud computing technology and science (CloudCom). [S.l.], 2019. p. 199–208.

FOWLER, M.; LEWIS, J. Eb/ol. microservices definition of this new architectural term.
Microservices Definition of this New Architectural Term, 2014.

GOLDWASSER, S.; MICALI, S.; RACKOFF, C. The knowledge complexity of interactive
proof systems. SIAM Journal on computing, SIAM, v. 18, n. 1, p. 186–208, 1989.

GONZALEZ, N. et al. A quantitative analysis of current security concerns and solu-
tions for cloud computing. Journal of Cloud Computing: Advances, Systems and
Applications, Springer, v. 1, p. 1–18, 2012.

GRASSI, P. A.; GARCIA, M. E.; FENTON, J. L. Digital identity guidelines. NIST special
publication, v. 800, p. 63–3, 2017.

JESSUP, A. et al. Dvid: Adding delegated authentication to spiffe trusted domains.
In: BAROLLI, L. (Ed.). Advanced Information Networking and Applications. Cham:
Springer Nature Switzerland, 2024. p. 289–300. ISBN 978-3-031-57916-5.

JONES, M. B. JSON Web Algorithms (JWA). RFC Editor, 2015. RFC 7518. (Request
for Comments, 7518). Disponível em: <https://www.rfc-editor.org/info/rfc7518>.

JONES, M. B.; BRADLEY, J.; SAKIMURA, N. JSON Web Signature (JWS). RFC Ed-
itor, 2015. RFC 7515. (Request for Comments, 7515). Disponível em: <https://www.
rfc-editor.org/info/rfc7515>.

JONES, M. B.; BRADLEY, J.; SAKIMURA, N. JSON Web Token (JWT). RFC Edi-
tor, 2015. RFC 7519. (Request for Comments, 7519). Disponível em: <https://www.
rfc-editor.org/info/rfc7519>.

KJORVEZIROSKI, V.; FILIPOSKA, S. Kubernetes distributions for the edge: Serverless
performance evaluation. The Journal of Supercomputing, Springer, v. 78, n. 11, p.
13728–13755, 2022.

KOUKIS, G. et al. Performance evaluation of kubernetes networking approaches
across constraint edge environments. In: 2024 IEEE Symposium on Computers and
Communications (ISCC). [S.l.]: IEEE, 2024. p. 1–7.

KOZIOLEK, H.; ESKANDANI, N. Lightweight kubernetes distributions: A performance
comparison of microk8s, k3s, k0s, and microshift. In: Proceedings of the 2023
ACM/SPEC International Conference on Performance Engineering. New York, NY,
USA: ACM, 2023. (ICPE ’23), p. 17–29.

Kubernetes. Volumes: hostPath. 2025. <https://kubernetes.io/docs/concepts/storage/
volumes/#hostpath>. Online Documentation. Access in: October 11, 2025.

https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

73

Kubernetes CSI. Deploying a CSI Driver on Kubernetes. 2024. <https://
kubernetes-csi.github.io/docs/deploying.html>. Online Documentation. Access in: Oc-
tober 11, 2025.

KUMAR, R.; GOYAL, R. On cloud security requirements, threats, vulnerabilities and
countermeasures: A survey. Computer Science Review, v. 33, p. 1–48, 2019.
ISSN 1574-0137. Disponível em: <https://www.sciencedirect.com/science/article/pii/
S1574013718302065>.

LABS, G. Grafana: The open observability platform. 2025. <https://grafana.com/
grafana/>. Online. Access in: October 10, 2025.

MALER, E.; REED, D. The venn of identity: Options and issues in federated identity
management. IEEE security & privacy, IEEE, v. 6, n. 2, p. 16–23, 2008.

MELL, P.; GRANCE, T. The NIST Definition of Cloud Computing. [S.l.]: Special Pub-
lication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD,
2011.

MICROSOFT. What is Cloud Computing. 2024. <https://azure.microsoft.com/en-us/
overview/what-is-cloud-computing/>. Online Forum Post. Access in: Sep 15. 2024.

MICROSOFT. What is unified communications as a service? 2024. <https://www.
microsoft.com/en-us/microsoft-teams/unified-communications-as-a-service>. Online
Forum Post. Access in: Sep 15. 2024.

OKTA. What Is Federated Identity? 2024. Online forum post. Accessed
on November 14, 2024. Disponível em: <https://www.okta.com/identity-101/
what-is-federated-identity/>.

PAPADOPOULOS, G. T. Kubernetes in edge and cloud computing: A comparative
study of k3s, k0s, microk8s, and k8s. In: 2025 6th International Conference in Elec-
tronic Engineering & Information Technology (EEITE). [S.l.]: IEEE, 2025.

PEDNEKAR, S. et al. A comparative analysis of kubernetes and openshift based on
workloads using different hardware architecture. In: 2024 International Conference
on Computing and Technology. [S.l.]: IEEE, 2024.

PROMETHEUS. Overview. 2025. <https://prometheus.io/docs/introduction/overview/
>. Online Forum Post. Access in: January 12. 2025.

RAMADAN, I. et al. Evaluating kubernetes distributions: Insights from stress testing
scenarios. In: 2025 17th International Conference on COMmunication Systems
and NETworks (COMSNETS). [S.l.]: IEEE, 2025.

REDHAT. What is CaaS. 2024. <https://www.redhat.com/en/topics/cloud-computing/
what-is-caas>. Online Forum Post. Access in: Sep 15. 2024.

ROSE, S. et al. Zero Trust Architecture. Special Publication (NIST SP), National In-
stitute of Standards and Technology, Gaithersburg, MD, 2020. Disponível em: <https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420>.

https://kubernetes-csi.github.io/docs/deploying.html
https://kubernetes-csi.github.io/docs/deploying.html
https://www.sciencedirect.com/science/article/pii/S1574013718302065
https://www.sciencedirect.com/science/article/pii/S1574013718302065
https://grafana.com/grafana/
https://grafana.com/grafana/
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/
https://www.microsoft.com/en-us/microsoft-teams/unified-communications-as-a-service
https://www.microsoft.com/en-us/microsoft-teams/unified-communications-as-a-service
https://www.okta.com/identity-101/what-is-federated-identity/
https://www.okta.com/identity-101/what-is-federated-identity/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.redhat.com/en/topics/cloud-computing/what-is-caas
https://www.redhat.com/en/topics/cloud-computing/what-is-caas
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420

74

SECURITY, C. U.S. Department of H.; (CISA), I. S. A. Continuous Diagnostics and
Mitigation (CDM) Identity, Credential, and Access Management (ICAM) Reference
Architecture. [S.l.], 2023.

SECURITY, C. U.S. Department of H.; (CISA), I. S. A. ICAM 101 Briefing
for Public Safety Officials. 2023. Online forum post. Accessed on November
04, 2024. Disponível em: <https://www.cisa.gov/sites/default/files/2023-02/17_0515_
ICAM_101_Briefing_for_Public_Safety_Officials_FINAL508.pdf>.

SHARIFIAN, A. et al. An http connection pool for reducing web latency. In: IEEE Inter-
national Conference on Web Services (ICWS). [S.l.: s.n.], 2019. p. 98–105.

SPIFFE. Special Interest Group SPIFFE Specification. 2024. Online Forum Post.
Access in: December 04. 2024. Disponível em: <https://groups.google.com/a/spiffe.io/
g/sig-specification>.

SPIFFE. SPIFFE Standards. 2024. <https://github.com/spiffe/spiffe/tree/main/
standards>. SPIFFE Online Documentation. Access in: Oct 04. 2025.

SPIFFE. SPIFFE | CNCF. 2025. <https://www.cncf.io/projects/spiffe/>. Online Forum
Post. Access in: December 04. 2025.

SPIFFE. SPIFFE Concepts. 2025. Https://spiffe.io/docs/latest/spiffe-about/spiffe-
concepts/. SPIFFE Online Documentation. Access in: Oct 04. 2025.

SPIFFE. SPIFFE Quickstart Kubernetes. 2025. <https://spiffe.io/docs/latest/try/
getting-started-k8s/>. SPIFFE Online Documentation. Access in: Oct 04. 2025.

STAFFORD, V. Zero trust architecture. NIST special publication, v. 800, p. 207, 2020.

SUN, Y.; NANDA, S.; JAEGER, T. Security-as-a-service for microservices-based cloud
applications. In: IEEE. 2015 IEEE 7th International Conference on Cloud Comput-
ing Technology and Science (CloudCom). [S.l.], 2015. p. 50–57.

TELENYK, S. et al. A comparison of kubernetes and kubernetes-compatible platforms.
In: 2021 11th IEEE International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS). [S.l.]:
IEEE, 2021. v. 1, p. 313–317.

TURIN, G. et al. Predicting resource consumption of kubernetes container systems us-
ing resource models. Journal of Systems and Software, Elsevier, v. 203, p. 111750,
2023.

YAKUBOV, D.; HÄSTBACKA, D. Comparative analysis of lightweight kubernetes dis-
tributions for edge computing: Performance and resource efficiency. In: Service-
Oriented and Cloud Computing. Cham: Springer, 2025. (ESOCC 2025, Lecture
Notes in Computer Science, v. 15547), p. 81–95.

YAKUBOV, D.; HÄSTBACKA, D. Comparative analysis of lightweight kubernetes dis-
tributions for edge computing: Security, resilience and maintainability. In: Service-
Oriented and Cloud Computing. Cham: Springer, 2025. (ESOCC 2025, Lecture
Notes in Computer Science, v. 15547), p. 96–104.

https://www.cisa.gov/sites/default/files/2023-02/17_0515_ICAM_101_Briefing_for_Public_Safety_Officials_FINAL508.pdf
https://www.cisa.gov/sites/default/files/2023-02/17_0515_ICAM_101_Briefing_for_Public_Safety_Officials_FINAL508.pdf
https://groups.google.com/a/spiffe.io/g/sig-specification
https://groups.google.com/a/spiffe.io/g/sig-specification
https://github.com/spiffe/spiffe/tree/main/standards
https://github.com/spiffe/spiffe/tree/main/standards
https://www.cncf.io/projects/spiffe/
https://spiffe.io/docs/latest/try/getting-started-k8s/
https://spiffe.io/docs/latest/try/getting-started-k8s/

75

ČILIć, I. et al. Performance evaluation of container orchestration tools in edge comput-
ing environments. In: Sensors. [S.l.: s.n.], 2023.

76

APPENDIX A – RESULTS ON PAST IMPLEMENTATIONS/DEPLOYS

Throughout the course of the project, several papers have been created, each
focusing on the benchmarking of different PoCs related to the development and inte-
gration of identity documents within the SPIFFE ecosystem. These papers collectively
aim to provide empirical data on the system’s performance, analyzing key metrics such
as execution time, CPU consumption, memory utilization, and token size growth across
phases of the project.

The results presented in these papers are organized according to the differ-
ent phases of the project, each introducing new techniques, protocols, and challenges.
While these papers provide valuable insights, it should be noted that the results ob-
tained in the published works (JESSUP et al., 2024), (COCHAK. et al., 2024), and
(COCHAK et al., 2024) are not directly considered in the present thesis. This is be-
cause they were obtained with a different architectural approach (single deployment
for each PoC, Docker Compose only) and were conducted prior to the writing of this
thesis. Nevertheless, these preliminary studies were instrumental in guiding the ar-
chitectural decisions and performance evaluation methodology adopted for the unified
proof of concept presented herein. The complete analysis of the preliminary results
can be found in three papers, (JESSUP et al., 2024), (COCHAK. et al., 2024), and
(COCHAK et al., 2024).

A.1 PHASE 1 - DVID

As explained in Subsection 2.2.1.1, the focus was on the development and
benchmarking of the DVID, enabling SPIFFE workloads to authenticate users without
introducing additional trusted entities. The benchmarking targeted key operations in-
volved in the minting and validation endpoints of the DVIDs, with a specific focus on
performance metrics such as execution time, CPU consumption, memory usage, and
the impact of RSA-ZKP proofs on system efficiency. The results, outlined in (JESSUP
et al., 2024), are summarized as follows partially detailed in Figure 19.

CPU and Memory Consumption did not significantly differ between scenarios
with and without RSA-ZKP, contrary to initial expectations. As shown in Figure 19, both
CPU and memory usage remained relatively consistent across scenarios. This sug-
gests that the overhead typically associated with cryptographic operations like RSA-
ZKP was minimal. The efficient memory management provided by the Golang garbage
collector and potential local storage optimizations may have contributed to the neg-
ligible variance observed. Regarding execution time, adding RSA-ZKP resulted in a

77

Figure 19 – Phase 1 - Resources consumption.

●
● ●

●
● ● ● ● ●

IDLE NO_ZKP ZKP

0

10

20

30

40

50

C
P

U
 c

om
su

m
pt

io
n

(%
)

workload

●

●

●

asserting

mtier

target

(a) CPU consumption

(b) Memory consumption
Source: (JESSUP et al., 2024).

noticeable increase in time. The creation of a DVID document took 221.80 ± 37.22 ms
without the RSA-ZKP, but this increased to 461.07 ± 77.78 ms when the proof was
included, adding approximately 240 ms to the operation. Similarly, validation of a doc-
ument containing RSA-ZKP took 270.13 ± 76.13 ms, compared to just 11.61 ± 0.84
ms for documents without the proof. This substantial increase in validation time high-
lights the computational overhead of validating RSA-ZKP proofs, particularly in cloud
environments.

A.2 PHASE 2 - NESTED MODEL

Previously detailed in Subsection 2.2.1.2, this phase targeted the benchmark-
ing of key operations of the nested token model, focusing on execution time, CPU
consumption, memory usage, token size growth, and the impact of each signature
schemes on system performance. Table 15 summaries the resource consumption of
workloads during execution while Table 16 illustrates the time cost of specific functions.
The complete work is found in (COCHAK. et al., 2024).

Table 15 – Phase 2 - Resource consumption.
CPU Memory

Workload Idle (%) Anon-Mode (%) ID-Mode (%) Idle (MB) Anon-Mode (MB) ID-Mode (MB)
Front-End 14,3 ± 4,0 26,3 ± 5,4 28,7 ± 1,7 13.4 ± 2.3 19.7 ± 3.7 31.0 ± 6.4

Local IdP/TTP 14,4 ± 4,0 26,3 ± 5,4 28,8 ± 4,0 13.6 ± 2.3 18.3 ± 3.4 26.1 ± 5.0
Middle-Tier1 14,3 ± 4,0 26,3 ± 5,3 28,8 ± 4,0 13.6 ± 2.4 22.2 ± 4.7 28.6 ± 5.6
Middle-Tier2 14,3 ± 4,0 26,2 ± 5,4 28,8 ± 4,0 13.6 ± 2.4 22.3 ± 4.7 29.1 ± 5.8
Middle-Tier3 14,3 ± 4,0 26,3 ± 5,3 28,8 ± 3,9 13.4 ± 2.4 22.3 ± 4.7 29.0 ± 5.6
Middle-Tier4 14,3 ± 4,0 26,3 ± 5,3 28,7 ± 4,0 13.4 ± 2.4 22.3 ± 4.7 28.7 ± 5.8
Middle-Tier5 14,3 ± 4,0 26,3 ± 5,4 28,8 ± 3,9 13.4 ± 2.4 22.5 ± 4.8 29.2 ± 5.9

Target 14,7 ± 3,9 26,3 ± 5,3 28,8 ± 4,0 13.9 ± 2.5 25.0 ± 5.7 34.9 ± 7.1
Adapted from: (COCHAK. et al., 2024).

78

The memory consumption results show a consistent trend of increasing usage
as the token becomes more nested. As expected, the resource access layer exhibits
the highest memory usage due to its role in final validation and value storage. The
overall increase in memory consumption corresponds to the growth in token size, which
occurs with each nesting and issuance process across the components. The compari-
son between Anon-Mode and ID-Mode highlights that ID-Mode incurs a higher memory
cost. This is primarily due to the need to store and redirect sets of SVID certificates for
validation at each component. In contrast, the nested token exhibits linear growth in its
payload, meaning the impact of nesting extensions is constrained with each hop.

Despite the differences in memory usage, the execution time for both modes
in handling the nested token can be considered efficient, with minimal variation during
the issuance process. The use of identity documents in ID-Mode directly affects com-
putational resource consumption, although it still requires less time for token validation
compared to Anon-Mode. While Anon-Mode benefits from lower resource consumption
due to the use of concatenated signatures, it comes at the cost of considerably higher
validation and execution times compared to ID-Mode.

Table 16 – Phase 2 - Execution Time.
ID-Mode Anon-Mode

Workload Token Minting (𝜇s) Validation (𝜇s) Token Minting (𝜇s) Validation (𝜇s)
Front-end 217,85 ± 347,56 351,23 ± 84,56 1007,87 ± 249,24 -

Middle-Tier1 187,26 ± 34,39 708,39 ± 166,30 992,67 ± 234,95 -
Middle-Tier2 189,86 ± 41,57 1067,33 ± 195,27 1015,01 ± 246,86 -
Middle-Tier3 189,69 ± 36,34 1482,79 ± 352,94 995,63 ± 234,02 -
Middle-Tier4 188,54 ± 36,60 1800,60 ± 376,99 1030,39 ± 325,15 -
Middle-Tier5 196,26 ± 38,60 2209,10 ± 466,36 1039,25 ± 302,71 -

Target - 2554,14 ± 472,53 - 4616,95 ± 1012,38
Adapted from: (COCHAK. et al., 2024).

For the ID-Mode, the token minting cost is relatively consistent across different
components, but the Front-End workload exhibits a higher standard deviation com-
pared to the Middle-Tier components. Validation times, however, increase as the token
is nested more times. This increase is due to the added complexity of validating multiple
signatures, leading to higher execution time and resource consumption as more exten-
sions are added. In Anon-Mode, the execution time for token minting is similar across
all workloads, but the minting process takes longer compared to ID-Mode. This is due
to the additional key extraction process required before signing the new token. Regard-
ing validation, Anon-Mode shows significantly higher costs compared to ID-Mode, as it
utilizes a concatenated signature approach. This method requires recursive public key
computation during signature validation, resulting in increased execution time.

79

A.3 PHASE 3 - LSVID

Detailed in Section 2.2.1.3, this phase, the last of the project, used the Nested
Model scheme, specifically the ID-Mode, to implement and evaluate the LSVID, with
the project main objective to integrate it into the SPIFFE framework. In this phase, the
focus was placed on evaluating the performance of the document, with the metrics
detailed in Table 4. Figure 20 picture partially some obtained results.

Figure 20 – Phase 3 - Execution Time.

76.96
108.07 114.14

26 9.13 266.95

46 4.72

549.51
567.07

0

200

400

600

1 2 3 4
Nesting Level

Ti
m

e
Co

st
(µ

 s)

Extension Validate

Source: (COCHAK et al., 2024).

The results point out the cost of the LSVID approach. Both the minting and val-
idation operations for LSVIDs are fast, all completed within the time domain required-
less than 1 ±s, indicating their suitability for low-latency environments. This makes
LSVID particularly beneficial for authentication systems where speed is a crucial factor.
One of the key advantages of the LSVID over JWT-SVID is its ability to handle nested
tokens. While JWT-SVIDs natively support nesting, it is not implemented in practice.
In scenarios where hierarchical or complex authorization structures are required, this
becomes a significant limitation. Each additional level of nesting in JWT-SVID neces-
sitates the issuance of a separate token, adding complexity and overhead due to the
need to independently manage, validate, and handle each token.

In JWTs, nesting is achieved by embedding one JWT inside another, which
requires each nested token to be treated as an independent unit, including its own

80

header, payload, and signature. Each JWT-SVID is self-contained, and typically ranges
from 2 kB to 4 kB, depending on data size and signature length. To achieve a nesting
effect with JWT-SVIDs, you would need to embed multiple tokens, essentially creating
a chain of JWTs. For example, nesting four JWT-SVIDs would result in a combined size
that could range from 8 kB to 16 kB, depending on each individual token’s size. This
combined size is generally larger than that of a single LSVID with the same number of
nesting levels.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC

BIBLIOTECA UNIVERSITÁRIA

REPOSITÓRIO INSTITUCIONAL

CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT

ATESTADO DE VERSÃO FINAL

Eu, CHARLES CHRISTIAN MIERS, professor(a) do curso de MESTRADO EM

COMPUTAÇÃO APLICADA, declaro que esta é a versão final aprovada pela comissão

julgadora da dissertação/tese intitulada: “Container Orchestration Impact on SPIFFE Identity

Artifacts: A Performance Analysis of Docker vs Kubernetes” de autoria do(a) acadêmico

HENRIQUE ZANELA COCHAK.

JOINVILLE, 02 de DEZEMBRO de 2025.

Assinatura digital do(a) orientador(a):

CHARLES CHRISTIAN MIERS

	Folha de rosto
	Folha de aprovação
	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Fundamental Concepts
	SPIFFE / SPIRE
	Motivation and Problem Definition
	Motivation: The SPIFFE-IdT Project
	SPIFFE IdT Project - Phase I - DVID
	SPIFFE IdT Project - Phase II - Nested Token Model
	SPIFFE IdT Project - Phase III - LSVID

	Problem Definition

	Related Works
	Search Methodology

	Chapter Considerations

	Proposal
	Unification of SPIFFE-IdT models
	Relevant Scenarios
	Testbed
	Workload Architecture
	Hardware Specifications
	Testbed Configurations

	Chapter Considerations

	Experiments and Data Analysis
	Implementation of the Unified Architecture
	Mode Selection at Subject-WL
	Middle-Tier Subrouter Architecture
	Functional Preservation and Execution Flow
	Minting Process
	Validation Process

	Connection Pooling Analysis Across Assertion Modes

	Data Analysis and Results
	Network Performance Analysis

	Chapter Considerations

	Considerations & Future Work
	Bibliography
	Results on past implementations/deploys
	Phase 1 - DVID
	Phase 2 - Nested Model
	Phase 3 - LSVID

		2025-12-02T21:22:10-0300

