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RESUMO 

 

O acesso efetivo a dados públicos constitui condição fundamental para a 
promoção da transparência e da inovação; contudo, uma parcela significativa dos 
usuários ainda enfrenta dificuldades para converter questões cotidianas em consultas 
e informações capazes de gerar valor a partir desses dados. Registros 
administrativos, planilhas e documentos dispersos podem ser normalizados e 
consolidados em bases relacionais, tornando o conteúdo consultável de forma 
consistente; a partir desse ponto, a mediação por modelos Text-To-SQL permite um 
acesso conversacional, no qual o usuário formula a demanda em linguagem natural e 
o sistema produz a consulta SQL correspondente, sendo assim, este trabalho avalia, 
em cenário zero-shot, o desempenho de modelos de linguagem de grande escala na 
geração de consultas SQL a partir de linguagem natural aplicada a dados públicos de 
Santa Catarina. Construiu-se uma base bilíngue em SQLite com quatro variantes que 
combinam tabela única e esquema estrela, em português e inglês, e um conjunto de 
cinquenta perguntas com SQL de referência traduzidas para ambos os idiomas, 
totalizando duzentos pares. A inferência foi realizada localmente com modelos abertos 
e um único prompt prescritivo que exige a produção de um único comando válido, 
adotando-se uma métrica de acurácia composta que considera simultaneamente a 
equivalência de resultados em execução e a correspondência semântica e estrutural. 
Os resultados mostram vantagem consistente da tabela única sobre o esquema 
estrela e efeito favorável, ainda que não absoluto, do alinhamento entre o idioma do 
enunciado e o do esquema. Entre os modelos avaliados, o Qwen apresentou o melhor 
desempenho global, com de acurácia de 71,74 por cento na tabela única em português 
e de 60,00 por cento no esquema estrela em cenário cruzado, superando as demais 
opções em média nas diferentes combinações. Como contribuições, o estudo 
disponibiliza um recurso experimental bilíngue reprodutível, um protocolo de avaliação 
compatível com execução local e evidências sobre o impacto do desenho do banco e 
do idioma no Text-To-SQL em português. 

 
Palavras-chave: Text-To-SQL; LLMS; Zero-Shot; Esquema de Banco de Dados. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

ABSTRACT 

 
Effective access to public data is a prerequisite for transparency and innovation, yet 
many users face barriers to turning everyday questions into actionable results. 
Administrative records, spreadsheets, and scattered documents can be normalized 
and consolidated into relational databases, making the content consistently queryable; 
from that point, mediation via Text-To-SQL models enables conversational access, 
whereby the user formulates a request in natural language and the system produces 
the corresponding SQL query, reducing cognitive load and expanding the social reuse 
of information. Accordingly, this study evaluates, in a zero-shot setting, the 
performance of large language models in generating SQL from natural language over 
public data from Santa Catarina. We constructed a bilingual SQLite corpus with four 
variants that combine single-table and star-schema designs in Portuguese and 
English, and a set of fifty questions with reference SQL translated into both languages, 
totaling two hundred pairs. Inference was run locally with open models and a single 
prescriptive prompt that requires the production of one valid command, and we 
adopted a composite accuracy metric that jointly considers execution-level result 
equivalence and semantic and structural correspondence. The results show a 
consistent advantage for the single-table design over the star schema and a favorable, 
albeit not absolute, effect of aligning the language of the prompt with that of the 
schema. Among the evaluated models, Qwen achieved the best overall performance, 
with peak accuracies of 71.74 percent on the single-table design in Portuguese and 
60.00 percent on the star schema in a cross-lingual setting, outperforming the 
alternatives on average across the different combinations. As contributions, the study 
releases a reproducible bilingual experimental resource, an evaluation protocol 
compatible with local execution, and evidence on the impact of database design and 
language on Text-To-SQL in Portuguese. 
 
Keywords: Text-To-SQL; LLMS; Zero-Shot; Database Schema. 
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 INTRODUÇÃO 

 

 A intensificação da digitalização de sistemas e serviços produziu um 

crescimento expressivo no volume de dados mantidos em bancos relacionais, ao 

mesmo tempo em que consolidou a linguagem SQL como instrumento central de 

consulta e manipulação de estruturas tabulares. Embora amplamente difundida, a 

proficiência em SQL requer formação técnica específica, o que restringe o acesso 

direto à informação por parte de profissionais de áreas não técnicas e de usuários 

leigos. Essa barreira cognitiva e procedimental torna-se particularmente evidente 

quando se pretende explorar bases volumosas, heterogêneas e sujeitas a convenções 

semânticas próprias de cada domínio. 

Nesse cenário, a conversão de linguagem natural em SQL, usualmente 

denominada Text-To-SQL, constitui um passo relevante na democratização do acesso 

a dados estruturados, pois permite que perguntas formuladas em linguagem humana 

sejam traduzidas automaticamente em consultas executáveis. A ideia, presente desde 

os sistemas pioneiros de compreensão de linguagem natural orientados a bases de 

dados, remonta a LUNAR, voltado à análise de amostras lunares (WOODS, 1972), a 

CHAT-80, que explorava raciocínio lógico com PROLOG sobre uma base 

enciclopédica (WARREN; PEREIRA, 1980), a iniciativas de padronização de corpus 

como o ATIS, no domínio de viagens aéreas (DAHL et al., 1994), e ao GeoQuery, que 

consolidou o uso de aprendizado supervisionado para consultas geográficas (ZELLE; 

MOONEY, 1996). O advento do aprendizado profundo reconfigurou o campo com 

benchmarks como WikiSQL e Spider, que estimularam arquiteturas neurais de 

tradução semântica, a exemplo de Seq2SQL (ZHONG; XIONG; SOCHER, 2017), 

SQLNet (XU; BAO; XU, 2017) e IRNet (GUO et al., 2019).  Apesar desses avanços, a 

ênfase histórica no inglês limita a generalização a outros contextos linguísticos e 

sociotécnicos, como o português brasileiro, com impactos práticos na adoção em 

cenários reais. 

No Brasil, o acesso à informação pública é assegurado pela Lei nº 12.527, de 

2011, que estabelece a transparência ativa e passiva e fundamenta a disponibilização 

de dados abertos. A existência de portais, catálogos e interfaces de programação não 

elimina, entretanto, as exigências técnicas inerentes ao uso efetivo dessas fontes, que 

incluem a compreensão de taxonomias e classificações orçamentárias, a navegação 

por dicionários de dados, a execução de junções entre tabelas e a superação de 



15 

 

limitações operacionais de APIs e formatos. Em Santa Catarina, como no restante do 

país, os conjuntos de dados orçamentários obedecem a esse marco jurídico, mas a 

sua exploração direta por cidadãos, jornalistas e gestores sem suporte técnico 

especializado permanece desafiadora. Essa conjuntura torna o problema Text-To-

SQL especialmente relevante para políticas de transparência e para o fortalecimento 

do controle social. 

Este trabalho investiga o desempenho de modelos de linguagem de grande 

escala na geração de SQL em português, com ênfase na avaliação multilíngue e 

multiestrutura. Para isso, foi construído um conjunto de dados bilíngue, em português 

e inglês, composto por informações orçamentárias públicas do Estado de Santa 

Catarina, de modo a refletir nomenclaturas, códigos e práticas do domínio. A base foi 

disponibilizada no repositório online github1 em duas modelagens complementares, 

uma em esquema estrela e outra em tabela única, com o objetivo de mensurar o efeito 

do desenho do banco na acurácia das consultas geradas e, simultaneamente, avaliar 

a sensibilidade dos modelos à correspondência linguística entre o idioma do esquema 

e o idioma das perguntas.  

A avaliação contempla cinco modelos de código aberto representativos do 

estado da prática recente, a saber, Gemma, OpenChat, Gaia, DeepSeek e Qwen. A 

seleção considera, de forma pragmática, a disponibilidade de versões instrucionais, a 

viabilidade de execução em infraestrutura local e o suporte a cenários multilíngues, 

todos fatores relevantes para adoção em contextos públicos brasileiros. Os 

experimentos são conduzidos em regime zero-shot, sem ajuste fino, a fim de aferir a 

capacidade de generalização nativa dos modelos frente à tradução semântica entre 

linguagem natural e SQL. 

A pesquisa está orientada por questões que articulam idioma e modelagem de 

dados. Investiga-se se o desempenho dos modelos varia quando o idioma do 

esquema e o idioma das perguntas estão alinhados ou desalinhados e se a 

organização dos dados em esquema estrela ou em tabela única influencia a precisão 

de execução e a consistência sintática das consultas geradas. Ao responder a essas 

questões, o estudo pretende oferecer evidências comparativas que auxiliem 

pesquisadores e gestores públicos na definição de estratégias de publicação e 

exploração de dados que privilegiem acessibilidade e qualidade de resposta 

 
1 Link de acesso á base de dados https://github.com/Jonasorso/Despesas_Sc_Text-To-Sql 
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 OBJETIVO 

 

O presente trabalho tem como objetivo analisar o desempenho de modelos de 

linguagem de grande escala na tarefa de transformação de linguagem natural em 

consultas SQL, considerando variações de idioma e estrutura de banco de dados. A 

pesquisa busca avaliar o desempenho de modelos de linguagem de grande porte na 

geração de consultas SQL em diferentes contextos linguísticos, avaliando sua 

aplicabilidade em bases de dados governamentais brasileiras. 

Os Objetivos Específicos (OE) incluem: 

• Desenvolver uma base de dados bilíngue composta por informações 

orçamentárias públicas, estruturada em dois formatos distintos (esquema estrela 

e tabela única), adequada para experimentos de Text-To-SQL; 

• Avaliar comparativamente o desempenho de diferentes modelos de linguagem 

(Gemma, OpenChat, Gaia, DeepSeek e Qwen) em cenários com variação de 

idioma entre a pergunta e o schema do banco de dados aplicando técnicas de 

zero-shot; 

• Investigar a influência da estrutura do banco e da correspondência linguística 

sobre a acurácia das consultas geradas; 

  

 ESCOPO 

 

 O estudo centra-se em dados orçamentários públicos do Estado de Santa 

Catarina e utiliza um conjunto bilíngue, com esquemas e consultas em português e 

em inglês, de modo a examinar simultaneamente os efeitos do idioma e do desenho 

do banco de dados na qualidade das respostas. Para isolar esses fatores, a base é 

disponibilizada em duas modelagens complementares, um esquema estrela e uma 

tabela única, permitindo mensurar o impacto da organização dos dados na geração 

de consultas. 

 A pesquisa adota exclusivamente o regime zero-shot, sem qualquer etapa de 

ajuste fino ou treinamento adicional, e emprega modelos abertos representativos do 

estado da prática recente, selecionados pela viabilidade de execução local e suporte 

a cenários multilíngues. O objetivo é observar a capacidade de generalização nativa 

desses modelos diante da tarefa de tradução semântica entre linguagem natural e 

SQL em um domínio público concreto. As consultas consideradas abrangem 
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diferentes tipos de categorias, passando por itens mais simples, como consultas 

simples e indo até operações com junções de tabelas, preservando foco em bancos 

relacionais padronizados e evitando cenários artificiais com múltiplos bancos 

heterogêneos ou estruturas incomuns que fujam ao escopo de aplicação prática deste 

estudo. 

 

 ORGANIZAÇÃO DO TEXTO 

 

 Esta dissertação está estruturada em quatro capítulos, além das seções 

introdutórias, conclusão e dos apêndices. 

O Capítulo 2 aborda os fundamentos teóricos que sustentam a pesquisa, 

contemplando conceitos relacionados à linguagem SQL, aos LLMs (Large Language 

Models) e às abordagens de conversão de linguagem natural em consultas 

estruturadas (Text-To-SQL). Também são discutidos os principais estudos e 

benchmarks que compõem o estado da arte nessa área, com destaque para os 

desafios linguísticos e estruturais que motivam a presente investigação. 

O Capítulo 3 apresenta os trabalhos relacionados, discutindo pesquisas e 

iniciativas relevantes sobre geração de SQL a partir de linguagem natural. São 

analisados os principais benchmarks, como o Spider e o WikiSQL, bem como estudos 

recentes que utilizam LLMs nessa tarefa. O capítulo também destaca as lacunas 

existentes nas pesquisas em língua portuguesa e as oportunidades que motivaram o 

desenvolvimento deste trabalho. 

O Capítulo 4 descreve o desenvolvimento do trabalho e evidencia o que foi 

construído. Detalha-se a criação do conjunto de dados orçamentários públicos do 

Estado de Santa Catarina, o processo de coleta e padronização, a modelagem em 

duas variantes complementares, esquema estrela e tabela única, e a produção das 

versões bilíngues do esquema e dos rótulos. Apresenta-se a elaboração do conjunto 

de consultas em linguagem natural com seus respectivos SQL de referência.  

O Capítulo 5 são descritos ainda o pipeline de avaliação em cenário zero-shot, 

a infraestrutura de execução e os artefatos gerados, como scripts, versões 

consolidadas da base e o repositório do material experimental. Esse capítulo 

consolida as decisões de projeto e as medidas de reprodutibilidade adotadas, 

demonstrando os resultados do processo de construção da base e do conjunto de 

questões que sustentam os testes. Neste capítulo também são apresentados os 
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resultados empíricos obtidos a partir dos experimentos comparativos com modelos de 

linguagem abertos, conduzidos sobre as duas modelagens de dados e nas 

combinações de idioma entre esquema e consultas. Relata-se a acurácia composta 

adotada como métrica, analisa-se o comportamento dos modelos nas diferentes 

configurações e discutem-se efeitos de idioma e de desenho do banco na geração de 

SQL.  
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 FUNDAMENTAÇÃO TEÓRICA 

 

Nesta seção de conceitos fundamentais, serão explorados temas como 

processamento de linguagem natural, modelos de linguagem, aprendizado de 

máquina e SQL, que se interconectam para abordar os desafios e avanços na 

tradução de texto em linguagem natural para comandos estruturados em bancos de 

dados relacionais. 

 

 PROCESSAMENTO DE LINGUAGEM NATURAL 

 

Gonzalez e Lima (2003) afirmam que o processamento da linguagem natural 

(PLN) trata computacionalmente os diversos aspectos comunicação humana, como 

sons, palavras, sentenças e discursos, considerando formatos e referências, 

estruturas e significados, contextos e usos. Em sentido bem amplo, podemos dizer 

que o PLN visa fazer o computador se comunicar em linguagem humana, nem sempre 

necessariamente em todos os níveis de entendimento e/ou geração de sons, palavras, 

sentenças e discursos. 

A estrutura deste campo será separada em tópicos menores a fim de 

compreender como cada ponto se relacionam ao processamento da linguagem e 

como os modelos conseguem compreender na teoria o significado das palavras e 

textos. No entanto, também cabe salientar as diferenças entre a forma como cada 

modelo de processamento de linguagem trata as palavras, de forma que pode haver 

distinções entre eles, por exemplo, a diferença entre a análise das palavras em 

modelos Transformers e modelo de redes Neurais como LSTM, ver seção 2.2 sobre 

aprendizado de máquina. 

 

2.1.1 Análise Morfológica 

 

A análise Morfológica refere-se à natureza da composição das palavras e lida 

com a estrutura das palavras na linguagem, as quais são compostas das menores 

unidades de significado, por exemplo: desinência, raiz, radical, afixo, tema e vogal 

temática (BATES, 1993). Também nesse sentido, para Gonzalez e Lima (2003), a 

morfologia e a sintaxe tratam da constituição das palavras e dos grupos de palavras 

que formam os elementos de expressão de uma língua. 



20 

 

Desta forma é compreensível que as palavras são classificadas naturalmente 

já pelos próprios humanos, de forma que o processamento da linguagem se aproveita 

destas técnicas para também compreender seus significados. Por exemplo utilizando 

a palavra “processamento”, temos que radical é o "process", onde o núcleo 

significativo da palavra, derivado do latim processus (ação de avançar, progredir). 

Esse radical está associado à ideia de seguir um curso ou realizar etapas. E também 

o sufixo nominal "-amento" que indica o resultado de uma ação ou o processo 

relacionado à raiz verbal. É comum em palavras da língua portuguesa que designam 

ações ou processos derivados de verbos.  

Por meio desta análise, os modelos de linguagem classificam as palavras, e 

para isso duas técnicas são muito utilizadas: a stemming e a Lemmatization. Onde o 

stemming é o processo de se reduzir palavras flexionadas e derivadas à sua raiz 

(stem), geralmente sob a forma de uma palavra escrita (BATES, 1993). Por exemplo, 

a raiz “corr” dá origem a diversas palavras, como correndo, corrida, corredor etc. Para 

o processo de Lemmatization é redução à forma canônica, que, geralmente, reduz os 

verbos ao infinitivo e os adjetivos e substantivos à forma masculina singular 

(Arampatzis, 2000), um exemplo desta técnica aplicado é a palavra “correndo”, que 

seria transformada em seu verbo no infinitivo “correr”. 

Vale aqui ressaltar que os Transformers, tecnologia mais empregada 

atualmente tem um processo diferente do que é utilizado pois tem uma abordagem 

contextualizada e distribuída de representação lexical, que é diferente do stemming e 

da Lemmatization. Enquanto o stemming e a lematização buscam simplificar ou 

normalizar as palavras para uma forma base ou raiz (muitas vezes sem considerar o 

contexto), os Transformers são capazes de gerar representações contextuais de 

palavras com base em suas posições e contextos nas frases (Vaswani et al. 2017). 

 

2.1.2 Análise Sintática 

 

Para Gonzalez e Lima (2003), a análise sintática (parsing) é o processo de 

avaliação das diferentes formas de combinar regras gramaticais, com o objetivo de 

gerar uma árvore que represente a estrutura sintática de uma sentença. Por exemplo, 

para a frase "O gato correu atrás do rato", a análise sintática identificaria "O gato" 

como o sujeito, "correu" como o verbo predicado e "atrás do rato" como o objeto. 
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No entanto, os modelos Transformers não realizam um parsing explícito com 

base na construção de árvores sintáticas, como acontece em abordagens tradicionais 

de processamento de linguagem natural. Em vez disso, eles utilizam o mecanismo de 

atenção para aprender relações sintáticas e semânticas de forma implícita (Vaswani 

et al., 2017). Esse mecanismo permite que o modelo identifique quais palavras estão 

mais relacionadas entre si dentro de uma frase, sem necessidade de estruturas 

hierárquicas explícitas. 

Por exemplo, no contexto da frase "O gato correu atrás do rato", um 

Transformer seria capaz de capturar a relação entre "correu" e "rato" diretamente por 

meio de pesos de atenção. Essa abordagem torna os modelos mais adaptáveis e 

eficientes para uma ampla variedade de tarefas, pois permite aprender diretamente a 

partir dos dados, sem depender de regras ou estruturas linguísticas pré-definidas. 

Ainda assim, informações sintáticas podem ser incorporadas aos Transformers em 

tarefas específicas, como no caso de sistemas que combinam parsing com 

embeddings contextuais. 

 

2.1.3 Variações linguísticas das palavras 

 

As variações linguísticas segundo (JACQUEMIN; KLAVANS; 

TZOUKERMANN, 1997) e (ARAMPATZIS, 2000) podem ser classificadas em:  

• morfológica, quando processos flexionais ou derivacionais criam palavras 

diferentes, como em “lobo” e “lobos”;  

• lexica, quando diferentes palavras são usadas para representar o mesmo 

significado, como “bolacha” e “biscoito”;  

• sintático-semântica, quando a posição relativa das palavras determina frases 

com significados diferentes, como “biblioteca da ciência” e “ciência da biblioteca”;  

• morfossintática, quando variações morfológicas não impedem a manutenção 

do significado essencial da frase, podendo ser:  

• variações substantivo-substantivo, como resultado/agente em “fixação de 

nitrogênio” e “fixador de nitrogênio”, ou recipiente/conteúdo em “reservatório de água” 

e “reserva de água”;  

• variações substantivo-verbo, como processo/resultado em “fixação de 

nitrogênio” e “fixar nitrogênio”; e  
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• variações substantivo-adjetivo, onde um modificador preposicional é 

substituído por modificador adjetival, como em “variação do clima” e “variação 

climática”; e  

• semântica, quando diversos significados são possíveis para o mesmo objeto 

linguístico, como “palmas” e “queda da bolsa”. 

Desta forma as variações linguísticas podem impactar a forma como as 

arquiteturas dos modelos de linguagem interpretam e convertem texto em consultas 

SQL. Por exemplo, variações morfológicas, como "lobo" e "lobos", pedem que o 

modelo entenda que são a mesma palavra com pequenas mudanças. Variações 

lexicas, como "calçado" e "sapato", desafiam o modelo a perceber que são sinônimos 

e significam a mesma coisa. Diferenças na estrutura da frase, como em "fixação de 

nitrogênio" e "fixador de nitrogênio" (variações sintático-semânticas e 

morfossintáticas), exigem que o modelo identifique que a ideia principal continua a 

mesma, mesmo com palavras em posições diferentes. Por fim, as variações 

semânticas, como "palmas" (que pode significar aplausos ou planta), fazem o 

transformador precisar de pistas no texto para escolher o significado certo, garantindo 

que a consulta SQL reflita exatamente o que o usuário quer dizer. 

 Dessa forma, pode-se afirmar que a maneira como as frases e os textos são 

escritos influencia diretamente na obtenção dos resultados esperados, podendo gerar 

impactos tanto positivos quanto negativos. 

 

 APRENDIZADO DE MÁQUINA 

 

 O Aprendizado de Máquina é um campo da computação que busca 

desenvolver sistemas capazes de realizar tarefas que, até então, requeriam 

inteligência humana. O objetivo do aprendizado de Máquina é a construção de 

programas que melhorem seu desempenho por meio de exemplos (MITCHELL, 1997). 

Este campo está dividido em algumas abordagens, das quais o aprendizado 

supervisionado e não-supervisionado são os mais amplamente utilizados. O 

aprendizado supervisionado, uma das vertentes mais estudadas, envolve o 

treinamento de modelos a partir de dados rotulados, nos quais o objetivo é fazer 

previsões ou classificações com base em padrões aprendidos. Dentro deste contexto, 

diversos algoritmos e técnicas são explorados, como a regressão, utilizada para 

prever valores contínuos; a classificação, focada em categorizar dados em classes; 
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as redes neurais, que simulam a estrutura do cérebro humano para resolver 

problemas complexos; o processamento de linguagem natural, que lida com a 

interação entre computadores e linguagem humana; e os Transformers principalmente 

no processamento de linguagem. 

Esses paradigmas de aprendizado — supervisionado, não supervisionado e 

semi-supervisionado — são pilares fundamentais no desenvolvimento da inteligência 

artificial moderna, sendo aplicados em diversas áreas como saúde, finanças, 

marketing e muitas outras. Enquanto o aprendizado supervisionado utiliza dados 

rotulados para treinar modelos e o aprendizado não supervisionado identifica padrões 

em dados não rotulados, o aprendizado semi-supervisionado combina os dois, 

aproveitando pequenas quantidades de dados rotulados em conjunto com grandes 

volumes de dados não rotulados para alcançar melhores resultados. Nesta seção, 

exploraremos as técnicas de aprendizado supervisionado, destacando suas 

particularidades e aplicações, mas não de forma exaustiva, devido ao fato que esses 

tópicos serviram de norte e não como objetivo da dissertação. 

 

2.2.1 Aprendizado Supervisionado 

 

No aprendizado de máquina supervisionado, ocorre o treinamento dos 

modelos a partir de informações previamente rotuladas, ou seja, neste contexto já 

existe a relação de entrada e saída, que permite a técnica emprega reconhecer o 

padrão já estabelecido com base nessas informações. Sendo assim, segundo 

Ludermir (2021), o objetivo do algoritmo é construir um classificador que possa 

determinar corretamente a classe de novos exemplos ainda não rotulados. Para 

rótulos de classe discretos, esse problema é chamado de classificação e para valores 

contínuos como regressão.  

 

2.2.1.1 Regressão 

 

Modelos de regressão são ferramentas estatísticas amplamente utilizadas 

para descrever e analisar relações entre variáveis. Esses modelos são 

costumeiramente utilizados para prever e calcular o valor de uma variável dependente 

com base em uma ou mais variáveis independentes. A regressão linear, por exemplo, 



24 

 

assume uma relação linear entre as variáveis, enquanto a regressão logística é usada 

para variáveis dependentes categóricas. Ainda há extensões para dados que não 

seguem distribuições normais, como os modelos de regressão generalizados, que 

abrangem diferentes funções de ligação para modelar uma ampla gama de situações. 

Essas abordagens permitem a interpretação de relações complexas. (PAULA, 2004). 

 

2.2.1.2 Classificação 

 

A tarefa de classificação é amplamente empregada na mineração de dados e 

consiste em prever a classe de novos exemplos com base em suas características. 

Para isso, um modelo computacional é desenvolvido utilizando dados de treinamento, 

que permitem ao classificador identificar relações entre características e classes. Esse 

modelo é, então, aplicado a um conjunto de teste, cujas classes reais permanecem 

ocultas ao classificador. Após prever as classes, os resultados são comparados às 

classes reais para avaliar a acurácia do modelo. Diferentes modelos de classificação 

podem ser usados, como árvores de decisão, redes neurais, modelos bayesianos e 

máquinas de vetores de suporte, chamadas de SVMs, do inglês Suport Vector 

Machine (SILVA, 2011). 

 

2.2.1.3 Redes Neurais Artificiais 

 

As RNAs são modelos computacionais inspirados no funcionamento do 

cérebro humano. Elas são compostas por unidades simples, chamadas neurônios 

artificiais, que se conectam para formar redes complexas. Essas redes são capazes 

de aprender com exemplos, reconhecer padrões e tomar decisões, sendo 

amplamente utilizadas para resolver problemas complexos, especialmente quando o 

comportamento dos dados não é completamente conhecido. A criação das RNAs 

remonta a 1943, com o desenvolvimento de um modelo matemático do neurônio 

biológico, e evoluiu ao longo das décadas, com avanços significativos a partir de 1982. 

A escolha da arquitetura ideal para uma RNA é um desafio que envolve 

experimentação, mas as mais comuns incluem redes com uma ou múltiplas camadas 

e redes recorrentes. Assim como o cérebro humano, as RNAs aprendem através de 
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um processo de ajuste de pesos sinápticos, permitindo que elas generalizem 

informações e façam previsões (FLECK et al., 2016). 

 

2.2.2 Aprendizado Semi-supervisionado 

 

O aprendizado semi-supervisionado combina um conjunto reduzido de 

exemplos rotulados com um grande volume de dados não rotulados para reduzir o 

custo de anotação e melhorar a generalização. Estratégias clássicas incluem o auto-

treinamento com pseudo-rótulos com vistas complementares, enquanto abordagens 

contemporâneas impõem consistência a perturbações e usam pseudo-rotulagem de 

alta confiança; em linguagem natural, a retrotradução é um mecanismo efetivo para 

gerar pares sintéticos (YAROWSKY, 1995; BLUM; MITCHELL, 1998; SENNRICH; 

HADDOW; BIRCH, 2016; TARVAINEN; VALPOLA, 2017; BERTHELOT et al., 2019). 

Para Text-To-SQL, essas ideias se traduzem na expansão de pequenos conjuntos de 

pares pergunta–SQL por geração e validação via execução, embora este trabalho 

avalie modelos exclusivamente em regime zero-shot. 

 

2.2.3 Aprendizado Não-supervisionado 

  

 No aprendizado não supervisionado, o modelo busca estrutura latente em 

dados sem rótulos, organizando-os por similaridade, densidade ou geração 

subjacente. Em processamento de linguagem, a prática que sustenta os modelos 

atuais é o pré-treinamento auto-supervisionado, usualmente tratado como não 

supervisionado: modelos causais aprendem a prever o próximo token e modelos 

mascarados reconstroem lacunas, o que permite induzir regularidades sintáticas e 

semânticas a partir de grandes corpora sem anotação externa (RADFORD et al., 

2018; DEVLIN et al., 2019). Essa etapa é viabilizada pela arquitetura Transformer, que 

modela dependências de longo alcance por mecanismos de atenção e paralelismo, 

tornando o treinamento escalável (VASWANI et al., 2017). É dessa base que 

emergem as capacidades zero-shot exploradas nesta dissertação, inclusive na tarefa 

de Text-To-SQL, ainda que o mapeamento entre linguagem natural e consultas 

estruturadas exija posterior condicionamento ao esquema do banco. 
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2.2.3.1 Arquitetura Transformer 

 

 A arquitetura Transformers, proposta por Vaswani et al. (2017), introduziu o 

mecanismo de atenção como operador central para ponderar a relevância relativa de 

cada token dentro de uma sequência, superando limitações de dependências de longo 

alcance presentes em redes recorrentes. Diferentemente de abordagens sequenciais, 

os Transformers processam o texto em paralelo, o que favorece o treinamento em 

larga escala. A organização básica é composta por um codificador, responsável por 

construir representações contextuais da entrada, e por um decodificador, que gera 

saídas condicionadas a essas representações. Variantes somente decodificador são 

predominantes nos modelos de linguagem atuais. No pré-treinamento, modelos 

mascarados realizam modelagem de lacunas e modelos causais realizam modelagem 

autoregressiva, produzindo representações que se transferem para múltiplas tarefas, 

entre elas o Text-To-SQL, sem necessidade de ajustes manuais extensos. 

 

 LINGUAGEM DE CONSULTA ESTRUTURADA E MODELAGEM DE DADOS 

 

A linguagem de consulta estruturada, do inglês SQL, é uma linguagem de 

programação projetada para gerenciar e manipular dados em sistemas de 

gerenciamento de bancos de dados relacionais (SGBDs). Com a capacidade de 

realizar operações como consulta, inserção, atualização e exclusão de dados, o SQL 

se tornou uma ferramenta essencial para profissionais de TI e desenvolvedores. Ele 

permite a comunicação eficiente entre usuários e bancos de dados, proporcionando a 

organização e análise de grandes volumes de informações de maneira estruturada e 

acessível. Suas características o tornaram a linguagem padrão para a maioria das 

aplicações que envolvem bases de dados, sendo amplamente utilizado em áreas 

como negócios, ciência de dados e desenvolvimento de sistemas. 

Já no ponto da modelagem de dados, ela condiciona diretamente a 

complexidade sintática das consultas, o número de junções necessárias e a clareza 

semântica do esquema. Estruturas não normalizadas em tabela única tendem a 

reduzir a profundidade de junções e a simplificar instruções de filtragem e agregação; 

arranjos dimensionais, como o esquema estrela, equilibram legibilidade e redundância 

controlada ao centralizar medidas em uma tabela fato e descrever eixos de análise 

em dimensões; variações mais normalizadas, como o floco de neve, tornam explícitas 
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hierarquias nas dimensões ao custo de consultas potencialmente mais extensas. 

Nesta seção, apresentam-se os elementos de SQL pertinentes à formulação de 

consultas analíticas e, em seguida, discutem-se esses cenários clássicos de 

organização do catálogo, com ênfase em como as diferentes escolhas estruturais 

influenciam a redação e a execução de consultas e, por extensão, o mapeamento 

entre linguagem natural e instruções SQL em tarefas de Text-To-SQL. 

 

2.3.1 Linguagem de Consulta Estruturada 

 

De acordo com Elmasri e Navathe (2005), os bancos de dados são 

componentes fundamentais na sociedade moderna, desempenhando um papel 

central em diversas atividades cotidianas, como transações bancárias, reservas de 

hospedagens, consultas bibliográficas, compras online e controle de estoque em 

supermercados. Essas interações geralmente envolvem pessoas ou sistemas 

computacionais que acessam bancos de dados para realizar operações e atualizar 

informações. 

A manipulação desses dados é facilitada por uma linguagem padrão 

amplamente utilizada chamada SQL (Structured Query Language). O SQL foi 

desenvolvido para fornecer uma interface eficiente e padronizada para a interação 

com bancos de dados relacionais. Por meio dessa linguagem, é possível executar 

operações essenciais, como a criação e manutenção de estruturas de dados, a 

inserção, atualização e exclusão de registros, bem como a realização de consultas 

complexas para recuperar informações armazenadas. O SQL não apenas simplifica o 

gerenciamento de dados em sistemas de grande escala, mas também garante 

interoperabilidade entre diferentes plataformas de bancos de dados. 

Segundo Elmasri e Navathe (2005), para cada Sistema de Gerenciamento de 

Banco de Dados (SGBD) existente, é necessário especificar os esquemas conceitual 

e interno, bem como os mapeamentos entre eles. Para esse fim, utiliza-se a linguagem 

de definição de dados (Data Definition Language – DDL), que permite ao 

administrador do banco de dados (Database Administrator – DBA) e aos projetistas 

definir os esquemas e armazená-los no catálogo do SGBD. Em SGBDs que mantêm 

a separação entre os níveis conceitual e interno, a DDL é empregada para a definição 

do esquema conceitual, enquanto a linguagem de definição de armazenamento 

(Storage Definition Language – SDL) é utilizada para especificar o esquema interno. 
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Após a definição dos esquemas e o povoamento do banco de dados, os 

usuários podem manipulá-lo por meio da linguagem de manipulação de dados (Data 

Manipulation Language – DML), que fornece comandos para operações como 

recuperação, inserção, remoção e modificação dos dados. Neste trabalho, é dada 

ênfase às especificações dos comandos relacionados às consultas de busca ou 

recuperação, uma vez que esse é o foco central da pesquisa. 

 

2.3.2 Comandos de busca em SQL  

 

As consultas de busca realizadas por meio da linguagem de manipulação de 

dados (DML) são essenciais para recuperar informações armazenadas em um banco 

de dados. Essas consultas são construídas utilizando o comando SELECT, que 

permite selecionar, filtrar e organizar dados de acordo com critérios específicos. A 

seguir, são apresentadas as principais cláusulas utilizadas em consultas de busca: 

 

2.3.2.1 Select  

 

A cláusula SELECT é a base de qualquer consulta de busca e é utilizada para 

especificar as colunas que devem ser retornadas no resultado. Por exemplo: 

SELECT nome, idade FROM clientes; 

Essa consulta retorna os valores das colunas nome e idade da tabela clientes. 

 

2.3.2.2 From 

 

A cláusula FROM indica a tabela ou as tabelas de onde os dados serão 

extraídos. Em consultas mais complexas, ela pode incluir junções (joins) para 

combinar dados de múltiplas tabelas. Exemplo: 

SELECT pedidos.id, clientes.nome  

FROM pedidos  

JOIN clientes ON pedidos.cliente_id = clientes.id; 

O comando SQL retorna o ID do pedido e o nome do cliente, unindo as tabelas 

pedidos e clientes com base na correspondência entre pedidos.cliente_id e clientes.id. 
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2.3.2.3 Where 

 

A cláusula WHERE é utilizada para filtrar os registros que atendem a uma 

condição específica. Ela permite o uso de operadores lógicos (=, >, <, LIKE, IN, etc.) 

para criar critérios de seleção. Exemplo: 

SELECT nome  

FROM clientes  

WHERE idade > 30; 

Essa consulta retorna os nomes dos clientes com idade superior a 30. 

 

2.3.2.4 Group By 

 

A cláusula GROUP BY é usada para agrupar registros com base em uma ou 

mais colunas, sendo frequentemente combinada com funções agregadas, como SUM, 

COUNT, AVG, MAX e MIN. Exemplo: 

SELECT categoria, COUNT(*)  

FROM produtos  

GROUP BY categoria; 

Essa consulta conta quantos produtos existem em cada categoria. 

 

2.3.2.5 Having 

 

A cláusula HAVING é semelhante à cláusula WHERE, mas é usada para filtrar 

grupos de dados após a aplicação do GROUP BY. Exemplo: 

SELECT categoria, COUNT(*)  

FROM produtos  

GROUP BY categoria  

HAVING COUNT(*) > 10; 

Essa consulta retorna apenas as categorias que possuem mais de 10 

produtos. 
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2.3.2.6 Order By 

 

 A cláusula ORDER BY organiza os resultados da consulta em ordem 

ascendente (ASC) ou descendente (DESC). Exemplo: 

SELECT nome, idade  

FROM clientes  

ORDER BY idade DESC; 

Essa consulta retorna os nomes e idades dos clientes, organizados pela idade 

em ordem decrescente. 

 

2.3.2.7 Limit 

 

A cláusula LIMIT é usada para restringir o número de registros retornados pela 

consulta, sendo útil para exibir apenas uma parte dos dados. Exemplo: 

SELECT nome  

FROM clientes  

LIMIT 5; 

Essa consulta retorna apenas os cinco primeiros registros da tabela clientes. 

 

2.3.2.8 Combinação de Cláusulas 

 

As cláusulas podem ser combinadas para construir consultas mais 

complexas. Por exemplo: 

SELECT categoria, AVG(preco) AS preco_medio  

FROM produtos  

WHERE estoque > 0  

GROUP BY categoria  

HAVING AVG(preco) > 50  

ORDER BY preco_medio DESC  

LIMIT 3; 

Essa consulta retorna as três categorias com maior preço médio, 

considerando apenas os produtos com estoque disponível e com preço médio acima 

de 50. 
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2.3.3 Junções, chaves e integridade referencial (conceitual)  

 

 No modelo relacional, a estrutura lógica do catálogo — relações, atributos e 

restrições — determina a correção semântica dos dados e a forma canônica das 

consultas. A formulação original do paradigma relacional estabelece a identificação 

unívoca de tuplas, a independência lógica e o papel das restrições declarativas como 

base do projeto de esquemas normalizados (CODD, 1970). Nesse enquadramento, 

chaves e chaves estrangeiras constituem o mecanismo formal de identificação e de 

vínculo entre relações, enquanto as junções materializam, na álgebra e no SQL, as 

correspondências necessárias para combinar dados dispersos em múltiplas tabelas 

(ABITEBOUL; HULL; VIANU, 1995; ULLMAN, 1988). 

 A integridade referencial, por sua vez, estabelece que valores de chaves 

estrangeiras presentes em uma relação devem corresponder a valores existentes de 

chaves primárias (ou candidatas) na relação referenciada, admitindo políticas 

explícitas para atualizações e exclusões. A literatura discute condições de segurança 

para essas estruturas referenciais e os efeitos de operações com nulos e 

dependências múltiplas, propondo critérios formais para garantir consistência sob 

modificações no banco (RAFIQ; ORLOWSKA; SADIQ, 1991). 

 No contexto de geração automática de SQL a partir de linguagem natural, 

chaves e integridade referencial funcionam como âncoras semânticas para o “caminho 

de junção” correto entre tabelas, reduzindo ambiguidades na seleção de relações 

intermediárias e na formulação dos predicados ON. A distinção entre junções internas 

e externas altera a cobertura de registros ausentes, aspecto sensível em consultas 

agregadas, contagens e totais, o que reforça a importância de restrições declarativas 

e de esquemas explicitamente normalizados como suporte ao mapeamento entre 

termos do enunciado e colunas-chave do catálogo (CODD, 1970). 

 

2.3.4 Modelos de Dados 

 

A modelagem de dados para consulta analítica parte de princípios do modelo 

relacional e dos arranjos lógico-físicos que equilibram integridade, redundância e 

caminhos de acesso. Em ambientes voltados a leitura, como data warehouses e 

sistemas de apoio à decisão, a organização do catálogo influencia diretamente a 

complexidade das consultas, a profundidade de junções e a previsibilidade de padrões 
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de acesso (CHAUDHURI; DAYAL, 1997; ELMASRI; NAVATHE, 2005). Três 

configurações aparecem recorrentemente na literatura: a estrutura não normalizada 

em tabela única, o esquema estrela e o esquema floco de neve. Elas diferem no grau 

de normalização das dimensões, na forma de explicitar hierarquias e no custo de 

manutenção, com impactos distintos sobre formulação de consultas, otimização e 

legibilidade do catálogo. 

A estrutura de tabela única corresponde a uma relação não normalizada que 

reúne, em uma mesma tabela, atributos descritivos e medidas numéricas. Seu apelo 

está em reduzir o número de junções necessárias para responder a perguntas 

frequentes, encurtando o caminho de acesso aos atributos referenciados em cláusulas 

de projeção e seleção. Do ponto de vista lógico, essa organização sacrifica formas 

normais em favor de simplicidade operacional: há maior redundância e potencial de 

anomalias de atualização, mas em cenários essencialmente analíticos, com baixa ou 

nenhuma concorrência de escrita, tal custo pode ser aceitável (ELMASRI; NAVATHE, 

2005). Em termos de formulação de consultas, a tabela única tende a favorecer 

instruções de agregação e filtragem diretas, pois os nomes de colunas e medidas 

residem em um único catálogo, o que reduz a necessidade de raciocínio sobre chaves 

e relacionamentos durante a geração do SQL. 

O esquema estrela é um arranjo dimensional no qual uma tabela fato central 

armazena medidas e chaves estrangeiras que a conectam a tabelas dimensão. As 

dimensões, por sua vez, concentram atributos textuais e hierárquicos que descrevem 

eixos de análise, como tempo, organização e categorias funcionais. A literatura 

destaca que essa organização se consolidou em ambientes OLAP por combinar 

simplicidade de navegação com previsibilidade de junções: a maioria das consultas 

envolve a tabela fato e um subconjunto de dimensões, o que leva a padrões de junção 

relativamente estáveis e a expressões claras de agregação e restrição (KIMBALL; 

ROSS, 2013; PONNIAH, 2010). Embora as dimensões mantenham alguma 

redundância interna para facilitar cortes e drill-down, o esquema estrela privilegia 

legibilidade e desempenho em leitura, com catálogos que tornam as intenções 

analíticas mais explícitas no nível lógico (CHAUDHURI; DAYAL, 1997). 

O esquema floco de neve é uma variação do desenho dimensional em que as 

dimensões são parcialmente normalizadas, decompondo atributos em múltiplas 

tabelas ligadas por chaves estrangeiras. Essa normalização reduz redundância e 

pode tornar explícitas hierarquias rígidas, melhorando a manutenção quando há reuso 
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sistemático de níveis descritivos; por outro lado, aumenta o número de junções 

necessárias e a complexidade das consultas, o que tende a afastá-lo de cenários em 

que simplicidade e previsibilidade de caminhos de acesso são prioridades (KIMBALL; 

ROSS, 2013; GOLFARELLI; RIZZI, 2009).  

A comparação conceitual entre os três cenários pode ser vista como um 

compromisso entre simplicidade de consulta, normalização e manutenção. A tabela 

única minimiza junções e facilita instruções diretas às custas de redundância; o 

esquema estrela busca um ponto de equilíbrio ao centralizar medidas e oferecer 

dimensões de leitura clara; o floco de neve privilegia normalização e explicitação de 

hierarquias, ampliando o número de junções e a complexidade das expressões SQL 

(CHAUDHURI; DAYAL, 1997; KIMBALL; ROSS, 2013; GOLFARELLI; RIZZI, 2009). 

Em todos os casos, o catálogo e a nomenclatura dos atributos influenciam o 

mapeamento semântico entre linguagem natural e elementos do banco, aspecto 

relevante quando se discutem sistemas que geram consultas a partir de texto. 

No plano da fundamentação teórica, esses arranjos oferecem referenciais 

para avaliar como a estrutura do esquema condiciona o esforço de formulação das 

consultas e o desenho dos planos de execução. A literatura em armazéns de dados e 

análise multidimensional sugere que decisões de modelagem devem considerar 

simultaneamente requisitos de consulta, estabilidade de hierarquias, frequência de 

mudanças e custos de manutenção, além do comportamento do otimizador do SGBD 

em face de junções e agregações recorrentes (PONNIAH, 2010; GOLFARELLI; RIZZI, 

2009). Esses parâmetros conceituais definem o pano de fundo para discussões 

metodológicas subsequentes, nas quais diferentes estruturas de catálogo são 

utilizadas como referência para investigar como variações de complexidade relacional 

impactam a formulação e a execução de consultas. 

 

 LLMS PARA TEXT-TO-SQL 

 

Os grandes modelos de linguagem representam um dos avanços mais 

significativos da inteligência artificial nas últimas décadas. Baseados em arquiteturas 

de redes neurais profundas, especialmente os Transformers, esses modelos são 

treinados em grandes volumes de dados textuais com o objetivo de compreender e 

gerar linguagem natural de forma contextualizada. Sua capacidade de generalização 

permite a realização de tarefas complexas, como tradução automática, resumo de 
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textos, respostas a perguntas e, de forma mais recente, a geração de consultas SQL 

a partir de linguagem natural. 

O presente trabalho fundamenta-se nessa evolução tecnológica, explorando 

a aplicação e o comportamento de cinco modelos de linguagem contemporâneos — 

Gemma (Google)2, OpenChat (OpenChat/OpenLLM)3, Gaia (Ceia/UFG)4, DeepSeek 

(DeepSeek AI)5 e Qwen (Alibaba)6 — na tarefa de transformação de texto em SQL 

(Text-To-SQL). A seguir, são apresentados os aspectos conceituais, históricos e 

técnicos que sustentam o uso desses modelos. 

 

2.4.1 Histórico 

 

O Processamento de Linguagem Natural (PLN), subcampo da inteligência 

artificial, tem por objetivo permitir que computadores compreendam, interpretem e 

gerem linguagem humana. De acordo com Stryker e Holdsworth (2024), essa área 

busca aproximar as demandas linguísticas humanas das capacidades computacionais 

das máquinas, promovendo uma interação mais fluida e acessível entre ambos. 

O avanço expressivo do PLN ocorreu a partir de 2017, com a publicação do 

artigo Attention is All You Need (VASWANI et al., 2017), que introduziu o mecanismo 

de atenção e a arquitetura Transformer. Essa inovação permitiu que modelos de 

linguagem processassem contextos longos de forma paralela, superando as 

limitações das redes recorrentes (RNNs e LSTMs), que tratavam as palavras em 

sequência. A partir desse marco, a área experimentou um crescimento exponencial, 

com a emergência de modelos cada vez maiores e mais precisos. 

Entre os principais modelos desenvolvidos a partir dessa tecnologia estão: 

• GPT (RADFORD et al., 2018), que apresentou o uso de pré-treinamento não 

supervisionado; 

• BERT (DEVLIN et al., 2018), que introduziu a aprendizagem bidirecional de 

contexto; 

• XLNet (YANG et al., 2019), que integrou abordagens autoregressivas; 

 
2 Disponível em: https://huggingface.co/google 
3 https://huggingface.co/openchat 
4 https://huggingface.co/CEIA-UFG 
5 https://huggingface.co/deepseek-ai 
6 https://huggingface.co/Qwen 

https://huggingface.co/google
https://huggingface.co/openchat
https://huggingface.co/CEIA-UFG
https://huggingface.co/deepseek-ai
https://huggingface.co/Qwen
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• T5 (RAFFEL et al., 2020), que unificou múltiplas tarefas de NLP sob a estrutura 

“texto para texto”; 

• e RoBERTa (LIU et al., 2019), que aprimorou o BERT por meio de técnicas 

otimizadas de treinamento. 

Posteriormente, o GPT-3 (FLORIDI; CHIRIATTI, 2020; SCAO et al., 2022) 

consolidou a era dos grandes modelos de linguagem, destacando-se pela escala 

massiva e pela capacidade de generalização em múltiplas tarefas sem ajustes 

específicos. O surgimento de modelos de código aberto e multilíngues ampliou ainda 

mais o alcance dessa tecnologia, favorecendo pesquisas aplicadas e comparativas, 

como as conduzidas neste trabalho. A Figura 1 ilustra o processo de evolução dos 

principais modelos e suas ramificações ao longo dos anos. 

 

Figura 1 - Arvore de evolução dos grandes modelos de Linguagem 
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Fonte: https://github.com/Mooler0410/LLMsPracticalGuide/blob/main/imgs/models-colorgrey.jpg 

 

 

2.4.2 Aplicações  

 

Segundo Bommasani et al. (2023), os grandes modelos de linguagem (LLMs) 

evoluíram significativamente, expandindo suas capacidades de compreensão textual 

para integrar fontes de informação multimodais, como imagens, áudios e vídeos. Essa 

transição para dados multimodais não apenas amplia o escopo dos modelos, mas 

também proporciona uma integração mais rica de contextos, possibilitando a 

realização de tarefas complexas. A diversidade de entradas, portanto, permite a 

criação de uma variedade de saídas e a aplicação desses modelos em uma gama de 

contextos práticos. Entre as aplicações mais notáveis, estão o reconhecimento e a 

geração de imagens, análise de sentimentos em textos, tradução automática e 

sistemas de recomendação, entre outros. O conceito de "Foundation Models", ou 

modelos de base, surge dessa evolução, em que os modelos não são projetados 

apenas para uma tarefa específica, mas têm a capacidade de serem aplicadas 

técnicas de fine-tunning para múltiplas tarefas com alta eficácia. A Figura 2 ilustra essa 

arquitetura, destacando a estrutura de dados e as aplicações que se beneficiam dessa 

abordagem flexível. 
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Figura 2 - Estrutura de dados e aplicações dos modelos de base 

 

Fonte: BOMMASANI et al. (2023). 

Com a possibilidade de geração de grandes volumes de dados e da 

adaptação de grandes modelos de linguagem a diferentes contextos, essas 

tecnologias puderam ser aplicadas de forma eficaz em diversas áreas do 

conhecimento e do mercado. Na medicina, por exemplo, os modelos de linguagem 

têm sido utilizados para acelerar diagnósticos, interpretar exames médicos e até 

mesmo para a descoberta de medicamentos (Thirunavukarasu et al., 2023). No campo 

da tradução de textos, os modelos oferecem soluções mais rápidas e precisas, 

melhorando a comunicação em diferentes idiomas (Brants et al., 2023). Na educação, 

esses modelos estão sendo aplicados para personalizar o ensino, identificar lacunas 

no aprendizado e até mesmo para criar tutores virtuais interativos, que adaptam o 

conteúdo conforme a necessidade do estudante (Kasneci et al., 2023). Em tarefas de 

análise de sentimentos, esses modelos se destacam pela precisão em capturar 

nuances de sentimentos em textos, algo essencial para empresas que buscam 

entender melhor o feedback de consumidores (Yang et al., 2024). Na área do direito, 

os LLMs ajudam a acelerar a revisão de documentos legais e na classificação de 

jurisprudência, tornando processos complexos mais ágeis e eficientes (Lai et al., 

2024). Além disso, na automação, esses modelos têm sido aplicados para otimizar 
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processos industriais e operacionais, além de permitir a criação de assistentes virtuais 

avançados (Su et al., 2024). Na área de transformação de texto em SQL, no qual esse 

trabalho está inserido, esses modelos têm facilitado a criação automática de consultas 

a partir de instruções em linguagem natural, simplificando a interação com bancos de 

dados (Shi et al., 2024). O avanço contínuo dessas tecnologias promete expandir 

ainda mais seu impacto, oferecendo soluções inovadoras para diversos desafios 

globais. 

 

2.4.3 Grandes Modelos de Base 

 

 Os modelos considerados nesta dissertação pertencem a famílias abertas e 

amplamente documentadas na literatura técnica recente, disponibilizadas em 

repositórios públicos como o Hugging Face e usualmente acompanhadas de variantes 

instrucionais e suporte multilíngue. Em termos conceituais, tais famílias ilustram o 

estado da arte em modelos baseados em Transformer, combinando pré-treinamento 

em corpora extensos com etapas de alinhamento por instruções, o que favorece a 

produção de saídas estruturadas e aderentes a formatos específicos de tarefa, como 

a geração de consultas SQL. 

A linha Gemma (GEMMA TEAM, 2024), mantida por iniciativa corporativa, 

representa a tendência de disponibilização de modelos abertos orientados à eficiência 

de inferência e ao uso responsável. Essas distribuições costumam oferecer variantes 

com diferentes vocações linguísticas, incluindo configurações alinhadas ao português, 

e são frequentemente empregadas em estudos que investigam a relação entre 

adaptação instrucional e conformidade de saída em tarefas de geração estruturada. 

A família OpenChat (WANG et al., 2023), associada ao ecossistema de 

modelos alinhados por instruções a partir de bases amplamente difundidas, aparece 

de forma recorrente em relatórios técnicos que descrevem pipelines de curadoria de 

instruções e refinamento de diálogo. Do ponto de vista conceitual, trata-se de uma 

linha representativa para discutir como o alinhamento supervisionado e técnicas 

correlatas influenciam a aderência do modelo a formatos de resposta esperados. 

O projeto Gaia (CEIA-UFG, 2025), desenvolvido por grupo acadêmico nacional, 

oferece uma adaptação instrucional com foco explícito em português do Brasil. A 

documentação pública enfatiza a curadoria de dados e a orientação das saídas para 

formatos estruturados, o que torna essa família especialmente pertinente quando se 
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discute a influência da proximidade linguística entre etapas de ajuste instrucional e 

domínios de aplicação em língua portuguesa. 

A série Qwen (YANG et al., 2024), mantida por um laboratório industrial, reúne 

modelos multilíngues de propósito geral publicados em iterações sucessivas e 

frequentemente acompanhados de variantes instrucionais. Esses modelos são 

citados na literatura técnica como exemplos de combinações entre vocabulários 

amplos, cobertura de múltiplas línguas e mecanismos de alinhamento que favorecem 

tarefas de tradução semântica entre linguagem natural e representações formais. 

A linha DeepSeek (GUO et al., 2025), por sua vez, inclui modelos obtidos por 

destilação e de treinamento que buscam explicitar etapas internas de raciocínio 

mantendo custo de inferência reduzido, aplicando técnica na qual um modelo “aluno”, 

menor e mais barato, é treinado para imitar o comportamento de um modelo 

“professor”. No plano teórico, essa família é útil para discutir o papel da destilação e 

do alinhamento na consistência de saídas estruturadas, bem como os compromissos 

entre capacidade de representação e eficiência. 

Em conjunto, essas famílias permitem fundamentar três aspectos que são 

centrais para a tarefa de Text-To-SQL em contextos bilíngues: a utilidade de variantes 

instrucionais para aumentar a conformidade com o formato de saída; a importância do 

suporte multilíngue para a transferência entre perguntas e esquemas em línguas 

distintas; e o papel de abordagens de eficiência, como destilação e quantização 

relatadas na documentação pública, para viabilizar o uso de modelos abertos em 

ambientes computacionais restritos. Essa caracterização, em nível conceitual, 

estabelece o pano de fundo necessário para as discussões metodológicas e analíticas 

desenvolvidas nos capítulos subsequentes. 

Além das famílias já apresentadas, a literatura descreve outras linhas 

amplamente empregadas em pesquisas com modelos de pesos abertos e instrução. 

A série LLaMA consolidou o uso de pesos abertos como base para derivações e 

ajustes instrucionais (TOUVRON et al., 2023); a família Mistral, incluindo variações de 

mistura de especialistas, enfatiza eficiência e qualidade em portes reduzidos (JIANG 

et al., 2023); o projeto BLOOM destaca-se pelo caráter verdadeiramente multilíngue e 

pela abertura de dados e pesos em larga escala (SCAO et al., 2022), entre outras não 

citadas aqui, que por questões como tempo e capacidade de análise, estão limitadas. 
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2.4.4 Hugging Face 

 

A Hugging Face7 constitui uma infraestrutura para pesquisa e desenvolvimento 

em aprendizado de máquina que integra repositórios públicos de modelos e dados, 

bibliotecas de uso amplo e serviços de execução em um único ecossistema coerente, 

promovendo transparência, reprodutibilidade e colaboração científica. Seu repositório 

de modelos com versionamento e cartões padronizados de documentação, somado a 

recursos análogos para conjuntos de dados, viabiliza rastreabilidade de experimentos 

e comparabilidade entre abordagens. No plano técnico, a biblioteca Transformers 

oferece interfaces unificadas para modelos contemporâneos e se articula com 

componentes como Datasets, Tokenizers, Accelerate e métodos de ajuste fino 

eficiente, possibilitando desde experimentação exploratória até pipelines de produção 

com custos computacionais controlados. Em paralelo, ambientes de demonstração e 

serviços de inferência permitem validar hipóteses e disseminar resultados, 

preservando licenças e metadados. Para esta dissertação, esse conjunto de 

ferramentas e práticas fornece uma base padronizada para seleção, adaptação e 

avaliação de modelos multilíngues aplicados à transformação de linguagem natural 

em SQL, com documentação dos artefatos utilizados e condições de replicação por 

terceiros. 

 

2.4.5 Estratégias de Aplicação e Inferência 

 

 Os LLMs podem ser aplicados em diferentes modos de uso, dependendo da 

quantidade de exemplos e da adaptação ao domínio da tarefa: 

• Zero-shot learning caracteriza-se pela execução de uma tarefa sem a 

apresentação de exemplos específicos, apoiando-se no conhecimento 

adquirido no pré-treinamento; essa capacidade de transferência foi 

documentada em linguagem natural por Radford et al., ao demonstrar 

desempenho zero-shot em múltiplas tarefas, e consolidada por Brown et al., 

que avaliam LLMs em modos zero-shot e de aprendizado em contexto. 

(RADFORD et al., 2019; BROWN et al., 2020). 

 
7 Disponível em: https://huggingface.co/ 

https://huggingface.co/Qwen


41 

 

• Few-shot learning (BROWN et al., 2020): o modelo recebe poucos exemplos 

de entrada e saída como guia antes de gerar suas próprias respostas, 

ajustando-se minimamente ao contexto. 

• Fine-tuning (HOWARD; RUDER, 2018; DEVLIN et al., 2018): envolve o 

reprocessamento do modelo em um novo conjunto de dados supervisionado, 

de modo a especializá-lo em uma tarefa ou domínio específico. 

 No presente estudo, todos os experimentos foram conduzidos em modo zero-

shot, com o objetivo de avaliar a capacidade de generalização intrínseca dos modelos 

diante da tarefa de transformar linguagem natural em SQL, sem qualquer tipo de 

ajuste supervisionado prévio. Essa escolha possibilita observar o desempenho nativo 

de cada modelo em cenários multilíngues e com diferentes estruturas de banco de 

dados. 

 

2.4.6 Conversão de texto para linguagem SQL  

 

O Text-To-SQL é uma área de pesquisa que busca converter perguntas em 

linguagem natural em consultas SQL válidas. Essa transformação visa eliminar 

barreiras técnicas para o acesso a dados, permitindo que usuários sem conhecimento 

em SQL realizem consultas de forma intuitiva. O processo envolve etapas de 

interpretação semântica e geração estruturada, nas quais o modelo precisa 

compreender a intenção da pergunta e mapear corretamente os elementos da 

linguagem natural (entidades, atributos, condições) para o esquema do banco de 

dados. 

De acordo com Shi et al. (2024), os avanços recentes em LLMs transformaram 

o Text-To-SQL em um campo de experimentação ideal para avaliar a capacidade de 

raciocínio simbólico e generalização de modelos de linguagem. Com o uso de 

arquiteturas baseadas em atenção, os modelos atuais conseguem lidar com múltiplas 

tabelas, junções complexas e consultas agregadas, superando limitações das 

abordagens anteriores baseadas em regras ou aprendizado simbólico. A evolução 

dessa área reflete a convergência entre aprendizado profundo e linguagens 

estruturadas, tornando o Text-To-SQL uma aplicação prática e relevante da 

inteligência artificial no contexto de acesso a dados públicos e corporativos. 

A área de Text-To-SQL emergiu com a necessidade de facilitar o acesso a 

dados em sistemas de gerenciamento de banco de dados, especialmente em 
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contextos em que usuários não técnicos precisavam interagir com esses sistemas. 

Nos primeiros estudos, os sistemas eram baseados em regras ou abordagens 

limitadas, mas com o avanço da inteligência artificial, especialmente com o surgimento 

de modelos de linguagem de grande escala, o Text-To-SQL passou a contar com 

abordagens mais sofisticadas, baseadas em aprendizado de máquina e redes neurais, 

aumentando significativamente a precisão e a flexibilidade. 

A interface LUNAR [Woods et al., 1972] foi uma das pioneiras no 

desenvolvimento de sistemas de acesso a bancos de dados. Criada para uso na 

NASA, sua principal função era permitir consultas a um banco de dados contendo 

informações sobre amostras lunares coletadas pelo programa espacial Apollo. Já na 

década de 1980, surgiu o CHAT-80 [Warren & Pereira, 1980], o CHAT-80 utilizava a 

linguagem PROLOG em todas as etapas do processamento, que incluíam análise 

sintática, análise semântica e determinação do escopo de quantificadores, 

demonstrando a aplicação da lógica computacional em consultas a bancos de dados. 

Em 1994, o ATIS (Air Travel Information System) de Dahl et al. (1994), surgiu 

com um novo trabalho relacionado a transformação de texto em SQL, trazia consigo 

um novo corpus preparado de consultas SQL e que permitiu o benchmark geral para 

diversos modelos de NLP. Neste corpus existiam tantos as consultas em SQL como 

também os textos que dariam origem aos comandos. No entanto, estava limitado a 

um único domínio, o de viagens áreas. Esse projeto estabeleceu uma base sólida para 

pesquisas futuras em sistemas de Text-To-SQL e NLP, influenciando benchmarks 

modernos como WikiSQL e Spider. 

 

2.4.7 Bases de dados para Text-To-SQL 

 

 Entre as bases de dados mais relevantes para o desenvolvimento e avaliação 

de modelos de Text-To-SQL, destacam-se: 

• ATIS (Dahl et al., 1994): corpus voltado a consultas no domínio de viagens 

aéreas, pioneiro na padronização de dados para o treinamento de sistemas de 

linguagem natural. 

• WikiSQL (Zhong; Xiong; Socher, 2017): conjunto de pares texto–SQL extraídos 

da Wikipedia, voltado a consultas simples de tabela única. 

• Spider (Yu et al., 2018): benchmark que abrange múltiplos domínios e 

consultas complexas, incluindo junções e funções agregadas. 
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• Bird (Li et al., 2024): base mais recente, que introduz elementos de linguagem 

natural não estruturada e contexto híbrido para consultas realistas. 

 A base Spider foi utilizada como referência neste trabalho por ser amplamente 

adotada pela comunidade científica e por conter consultas de múltiplas tabelas e 

domínios, além de pares textuais anotados manualmente, o que garante qualidade e 

diversidade. A partir foi projetada a construção da base de questões e respostas 

relatadas na seção 4.1. 

 

2.4.7.1 Spider 

 

O Spider de Yu et al. (2018) é a base escolhida para construção dos testes e 

avaliação neste trabalho ele é um grande conjunto de dados rotulado por humanos 

para análise semântica complexa e entre domínios e tarefas de texto para SQL 

(interfaces de linguagem natural para bancos de dados relacionais). Ele foi lançado 

junto com o artigo EMNLP 2018: Spider: A Large-Scale Human-Labeled Dataset for 

Complex and CrossDomain Semantic Parsing and Text-To-SQL8 e será usado como 

base nas seções seguintes serão desenvolvidas.  

A base de dados Spider, apresentada por Yu et al. (2018), é amplamente 

reconhecida como uma das mais importantes no domínio de tarefas de Text-To-SQL. 

Foi projetada com o objetivo de oferecer um conjunto diversificado e complexo de 

dados para avaliação de modelos de parsing semântico e tradução de texto em 

consultas SQL. Essa base é única por sua abordagem centrada em múltiplos domínios 

e pela inclusão de consultas SQL que variam em complexidade, desafiando os 

modelos a generalizarem suas capacidades de compreensão e geração de 

linguagem. 

O diferencial do Spider reside em características objetivas que o tornam 

adequado para a avaliação de modelos de linguagem em tarefas de Text-To-SQL. Em 

termos de escala, a base reúne mais de 10.000 pares de exemplos, nos quais 

consultas SQL são associadas a descrições em linguagem natural, distribuídos em 

mais de 200 esquemas de banco de dados pertencentes a diferentes domínios. Essa 

 
8 O conjunto de dados Spider está disponível no site Yale LILY Lab: https://yale-

lily.github.io/spider  

 

https://yale-lily.github.io/spider
https://yale-lily.github.io/spider
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abrangência estrutural e temática reduz o risco de viés associado a domínios 

específicos e permite avaliar a capacidade dos modelos de generalizar para 

esquemas e contextos não vistos durante o treinamento. 

No que se refere à qualidade e à precisão, o Spider é integralmente rotulado 

por especialistas humanos, o que assegura a correspondência semântica entre as 

perguntas em linguagem natural e as consultas SQL associadas. Esse processo de 

anotação manual minimiza ambiguidades e inconsistências, fornecendo um conjunto 

de referência confiável para a avaliação objetiva da acurácia dos modelos. Além disso, 

a base foi concebida para incluir consultas que exigem operações complexas, como 

junções entre múltiplas tabelas, agregações e subconsultas, o que a diferencia de 

bases como o WikiSQL, predominantemente composto por consultas simples sobre 

tabelas únicas. 

Por fim, a relevância do Spider decorre de seu alinhamento com desafios 

encontrados em aplicações reais de Text-To-SQL. Conforme destacado por Yu et al. 

(2018), a base foi projetada para avaliar a capacidade dos modelos de compreender 

esquemas de dados previamente não vistos e de gerar consultas que demandam 

raciocínio lógico sobre múltiplas relações. Essas características tornam o Spider 

particularmente adequado para estudos que investigam a robustez e a generalização 

de modelos de linguagem em cenários realistas. 

 

2.4.8 Métricas de Avaliação 

 

 A avaliação de desempenho em tarefas de Text-To-SQL é tradicionalmente 

realizada por meio de métricas apresentadas por Yu et al. (2018), que comparam a 

consulta gerada pelo modelo com a consulta de referência. As mais utilizadas são: 

• Execution Accuracy (EA): mede se a consulta gerada produz o mesmo 

resultado que a consulta correta ao ser executada no banco de dados; 

• Logical Form Accuracy (LF): avalia a equivalência estrutural e semântica entre 

a consulta gerada e a consulta alvo; 

• Syntactic Validity: verifica se a consulta é sintaticamente válida e executável. 

 

 Essas métricas fornecem uma visão abrangente sobre o desempenho dos 

modelos, permitindo identificar tanto erros de compreensão semântica quanto 

limitações na construção sintática do SQL, sendo estas utilizadas nesta pesquisa para 
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avaliação dos resultados apresentados no capítulo 5, unificadas em uma única 

métrica. 

 

2.4.9  Princípios de prompting para geração estruturada 

 

 A formulação de prompts exerce influência direta sobre a qualidade e a 

conformidade sintática de saídas estruturadas como SQL. Três princípios gerais 

emergem da literatura. O primeiro é a instrução explícita e restritiva, que especifica de 

forma clara o objetivo, o formato esperado e eventuais limitações, reduzindo a entropia 

do espaço de saída; tal orientação encontra respaldo na evidência de aprendizado em 

contexto, pela qual grandes modelos ajustam seu comportamento a partir de 

exemplos e instruções no próprio prompt (BROWN et al., 2020).  

O segundo princípio é a decomposição do raciocínio em etapas latentes, isto 

é, a externalização do processo de resolução em passos que organizem a seleção de 

colunas, a determinação do caminho de junção e a aplicação de filtros e agregações; 

a literatura mostra que encorajar cadeias de raciocínio melhora a consistência e a 

exatidão em tarefas que exigem múltiplas operações simbólicas (WEI et al., 2022), 

efeito que pode ser reforçado por estratégias de auto consistência, agregando 

amostras de raciocínio para estabilizar a resposta final (WANG et al., 2022). 

 O terceiro princípio é a ancoragem no esquema, que consiste em serializar de 

modo compacto e inequívoco as tabelas, colunas e chaves relevantes, 

preferencialmente com nomes canônicos e exemplos mínimos de uso; em Text-To-

SQL, tal serialização atua como contexto delimitado que facilita o schema linking e 

reduz alucinações sobre objetos inexistentes no catálogo (YU et al., 2018). Em 

ambientes nos quais a validade sintática é crítica, técnicas complementares de 

decodificação ou verificação podem ser adotadas, restringindo a geração à gramática 

de SQL ou verificando incrementalmente a conformidade da estrutura produzida, 

abordagem que demonstrou reduzir substancialmente erros sintáticos em parsing 

semântico (SCHOLAK; SCHUCHER; BAHDANAU, 2021).  

 Em conjunto, instruções claras, decomposição explícita do raciocínio, 

serialização do esquema e, quando possível, decodificação ou verificação 

constrangida constituem um quadro de prompting alinhado à produção de consultas 

corretas e executáveis, sem prejuízo da generalização inerente ao regime zero-shot 
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ou few-shot (BROWN et al., 2020; WEI et al., 2022; WANG et al., 2022; SCHOLAK; 

SCHUCHER; BAHDANAU, 2021; YU et al., 2018). 
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 TRABALHOS RELACIONADOS 

 

A busca por trabalhos relacionados ao objetivo do trabalho foi realizada 

através de um Mapeamento Sistemático da Literatura (MSL) para buscar o estado da 

arte para a área de pesquisa. Com os resultados do MSL foi possível identificar os 

trabalhos que mais se aproximam do proposto e assim foi possível conhecer quais 

técnicas foram utilizadas para servir de guia para a execução dos testes. 

 

 MAPEAMENTO SISTEMÁTICO DA LITERATURA 

 

Inspirados nas pesquisas médicas, Petersen et al. (2008) explicam que os 

mapeamentos sistemáticos são trabalhos secundários que estudam um conjunto de 

trabalhos primários em uma área de pesquisa, porém de pontos de vista diferentes. 

Ambos objetivam levantar informações do estado da arte de uma área de pesquisa, 

sendo fonte de embasamento para elaboração de novas pesquisas na área em 

questão.  

O principal objetivo de um estudo de mapeamento sistemático é fornecer uma 

visão geral de uma área de pesquisa, e identificar a quantidade e o tipo de pesquisa 

e resultados disponíveis dentro dela. Frequentemente, alguém quer mapear as 

frequências de publicação ao longo do tempo para ver tendências. Um objetivo 

secundário pode ser identificar os fóruns nos quais a pesquisa na área foi publicada. 

(PETERSEN et al., 2008).  

As etapas essenciais do processo do estudo de mapeamento sistemático são 

a definição de questões de pesquisa, conduzir a busca por artigos relevantes, triagem 

de artigos, palavras-chave de resumos e extração e mapeamento de dados. Cada 

etapa do processo tem um resultado, o resultado do processo sendo o mapa 

sistemático. (PETERSEN et al., 2008). 

 

 PERGUNTAS NORTEADORAS 

 

As perguntas devem refletir o objetivo do mapeamento sistemático 

(PETERSEN et al., 2008), desta forma para esse estudo temos as seguintes 

perguntas:  
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a) Existe quantidade mínima de 5 publicações nos últimos 5 anos 

relacionadas à transformação de linguagem natural em consultas SQL? Justificativa: 

Esta questão visa entender a amplitude e a evolução do tema na literatura acadêmica. 

Publicações recentes são indicativas de um campo ativo e em desenvolvimento.  

b) Entre os trabalhos, existem modelos de linguagem que permitem a escrita 

em língua portuguesa? Justificativa: A identificação de modelos que operam na língua 

portuguesa permite que isso garante a aplicabilidade e a acessibilidade das 

tecnologias para usuários de língua portuguesa.  

c) Quais são as bases de dados mais comumente utilizadas para treinamentos 

de modelos ou customização de modelos de linguagem para transformação de texto 

em consultas sql? Justificativa: Conhecer as bases de dados utilizadas permite uma 

compreensão mais aprofundada sobre as metodologias aplicadas e a validade dos 

resultados obtidos pelos modelos.  

d) Quais são as técnicas de linguagem natural que são mais frequentemente 

utilizados em tarefas de transformação de texto em consultas sql? Justificativa: Avaliar 

o os modelos existentes ajudam a destacar aqueles que se mostram mais utilizados 

na tarefa de conversão de linguagem natural para SQL. 

 

 ESTRATÉGIA DE BUSCA 

 

Para a realização da busca bibliográfica, foram selecionadas quatro bases de 

dados reconhecidas por sua confiabilidade e qualidade, conforme apontado por 

Buchinger, Cavalcanti e Hounsell (2014). As bases escolhidas incluem IEEE Xplore, 

Periódicos Capes, ACM Digital Library e arXiv, todas acessíveis de forma gratuita por 

meio da VPN da UDESC. Essa seleção visou garantir a abrangência e a relevância 

dos resultados, considerando a expertise técnica e científica disponível nesses 

repositórios. 

A construção da estratégia de busca baseou-se em palavras-chave 

específicas ao tema central da pesquisa, como “Text-To-SQL”, “nl2sql” e “natural 

language to sql”. Por ser um campo majoritariamente técnico, onde a maioria dos 

trabalhos relevantes é redigida em inglês, optou-se por não incluir sinônimos em 

português. Com essas palavras-chave, foi formada a string de busca: 

(“Text-To-SQL” OR “nl2sql” OR “natural language to sql”). 
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Essa string foi aplicada nas bases selecionadas, com o objetivo de localizar trabalhos 

diretamente relacionados ao tema. 

Além disso, foram definidos critérios objetivos e subjetivos de inclusão e 

exclusão para assegurar que os artigos recuperados estivessem alinhados com os 

objetivos da pesquisa. Os critérios objetivos determinaram que os trabalhos deveriam 

ser da área de ciência da computação, publicados entre janeiro de 2019 e outubro de 

2024, disponíveis em inglês ou português, acessíveis gratuitamente e contendo as 

palavras-chave no título ou resumo. Já os critérios subjetivos orientaram a seleção de 

artigos que tratassem especificamente do tema Text-To-SQL e contribuíssem 

significativamente para a discussão do tópico. 

Por outro lado, os critérios de exclusão ajudaram a eliminar artigos duplicados 

e aqueles que não fossem fontes primárias. Esses cuidados na elaboração da 

estratégia de busca garantiram a obtenção de um conjunto de dados relevante, atual 

e diretamente relacionado à pesquisa, proporcionando uma base sólida para o 

desenvolvimento do estudo. 

 

 ANÁLISE DOS RESULTADOS 

 

A análise dos MBAs resultou em uma variação no número de publicações 

recuperadas: o arXiv apresentou 273 publicações, seguido pelo ACM com 42, 

Periódicos Capes com 38 e o IEEE com 6 publicações. Ao todo, foram obtidos 359 

resultados. Esses números indicam uma concentração maior no arXiv que se destaca 

como a principal fonte. Foi aplicado o método de busca inicialmente pelo título e 

resumo dos artigos e após aplicados os critérios de exclusão.  

Um ponto importante, são os dados extraídos dos artigos, sendo assim a 

análise estava em busca de 3 eixos, se se tratava de um artigo que implementa um 

modelo de linguagem natural voltado para Text-To-SQL, se relatava uma base de 

dados para utilização ou se relatava a aplicação do idioma português. E a seguir 

podemos observar um resumo dos artigos que mais contribuíram para responder as 

perguntas norteadoras. 
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3.4.1 Resumo dos Trabalhos 

 

José et al. (2022), explora a integração de sistemas de pergunta e resposta, 

Question Answering – QA, com Text-to-SQL para a língua portuguesa. Os autores 

propõem um modelo que combina técnicas de QA e tradução de linguagem natural 

para SQL, buscando melhorar a precisão e a fluência das consultas geradas a partir 

de perguntas em português. A abordagem proposta visa não apenas converter 

perguntas em consultas SQL, mas também fornecer respostas diretas baseadas nas 

informações extraídas do banco de dados. Os autores utilizaram um conjunto de 

dados especificamente desenvolvido para avaliar a eficácia do modelo em situações 

reais, levando em consideração as nuances e desafios da língua portuguesa. Um dos 

diferenciais desse trabalho é a ênfase em como as interações entre QA e Text-To-

SQL podem ser otimizadas para gerar resultados mais relevantes, além de promover 

uma experiência de usuário mais intuitiva.  

Os resultados mostram que o modelo integrado conseguiu melhorar 

significativamente a precisão das consultas geradas e a relevância das respostas 

fornecidas, em comparação com abordagens que tratam QA e Text-To-SQL como 

tarefas separadas. A pesquisa destaca a necessidade de avanços na combinação 

dessas tecnologias para otimizar a compreensão e a interação com bancos de dados 

em português, contribuindo para a acessibilidade e a utilidade de sistemas de 

informação. Em relação ao presente trabalho, observa-se uma diferença metodológica 

central: enquanto José et al. (2022) propõem e avaliam uma arquitetura específica 

treinada para o português, o projeto aqui desenvolvido concentra-se na avaliação 

comparativa de modelos de linguagem de grande porte em cenários zero-shot, 

considerando variações simultâneas de idioma e estrutura de banco de dados. Assim, 

este trabalho complementa a literatura ao investigar até que ponto modelos 

generalistas conseguem lidar com os mesmos desafios linguísticos, sem treinamento 

supervisionado específico. 

Complementando essa abordagem, Cozman (2021) O artigo apresenta o 

mRATSQL+GAP, um modelo de transformação de linguagem natural para SQL 

focado na língua portuguesa. O modelo combina a abordagem mRAT, que utiliza 

redes neurais para mapear perguntas em linguagem natural a consultas SQL, com a 

arquitetura GAP. O objetivo é superar desafios comuns na tradução de linguagem 
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natural para SQL, especialmente considerando as particularidades da língua 

portuguesa, como a ambiguidade e a variabilidade na expressão das consultas.  

Para treinar o modelo, os autores utilizaram um conjunto de dados específico 

para o português, o que é um diferencial significativo em relação a abordagens 

anteriores que se concentravam principalmente em inglês. Os resultados obtidos 

demonstraram que o mRAT-SQL+GAP conseguiu alcançar uma precisão alta nas 

consultas geradas, superando outros modelos existentes para a língua portuguesa. 

Essa pesquisa destaca a importância de desenvolver soluções personalizadas para o 

contexto linguístico local, contribuindo para o avanço das técnicas de Text-To-SQL e 

a inclusão de línguas menos representadas na literatura.  

A pesquisa em Text-To-SQL também se beneficia de conjuntos de dados 

robustos, como o Spider, introduzido por Yu et al. (2018), um extenso conjunto de 

dados anotados manualmente, com o objetivo de treinar e avaliar sistemas de parsing 

semântico complexo e Text-To-SQL. Composto por 10.181 consultas SQL complexas 

e 5.693 sentenças em linguagem natural, o Spider abrange 200 esquemas de banco 

de dados de 138 domínios diferentes, permitindo que os modelos sejam desafiados a 

generalizar consultas em múltiplos cenários. O diferencial do Spider reside na sua 

escala e diversidade, superando limitações de conjuntos de dados anteriores que se 

concentravam em domínios únicos, o que torna a tarefa de parsing semântico mais 

realista e abrangente. Inspirado na filosofia do Spider, o presente trabalho adota 

múltiplos esquemas e domínios, porém estende esse paradigma ao incorporar 

variações linguísticas e estruturas de dados alternativas, incluindo esquemas em 

estrela e tabelas únicas aplicadas a dados públicos brasileiros. 

Os resultados mostram que modelos existentes, como Seq2SQL e SQLNet, 

apresentaram desempenhos baixos ao serem avaliados no Spider, evidenciando a 

dificuldade das consultas e a necessidade de avanços nas técnicas de Text-To-SQL. 

O benchmark Spider destaca-se como uma referência desafiadora, com taxa de 

precisão insatisfatória para a maioria dos modelos testados, enfatizando a importância 

de novas abordagens na área.  

Li (2023) investiga a capacidade dos LLMs de servirem como interface para 

bancos de dados, traduzindo linguagem natural em consultas SQL. Para isso, os 

autores apresentam o BigBench, um benchmark de larga escala para Text-To-SQL 

com foco em bancos de dados. O BigBench inclui 214 bancos de dados complexos, 
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abrangendo diversos domínios e apresentando desafios como tabelas múltiplas, 

junções e agregações.  

O autor avaliou vários LLMs no BigBench, incluindo modelos de código aberto 

e modelos comerciais. Os resultados mostram que, embora os LLMs tenham 

apresentado avanços significativos na geração de código SQL, eles ainda enfrentam 

dificuldades em consultas complexas que exigem raciocínio multi-hop e compreensão 

profunda do esquema do banco de dados. O artigo conclui que, apesar do potencial 

dos LLMs como interface para bancos de dados, ainda há um longo caminho a 

percorrer para que eles atinjam um nível de desempenho satisfatório em cenários 

reais. O BigBench serve como um recurso valioso para a comunidade de pesquisa, 

permitindo a avaliação e o desenvolvimento de LLMs mais robustos e eficientes para 

tarefas de Text-To-SQL. Embora compartilhe o interesse na avaliação de LLMs para 

Text-To-SQL, o presente trabalho diferencia-se ao priorizar a análise do impacto do 

desenho do schema e da correspondência linguística entre pergunta e banco, em vez 

de focar exclusivamente na complexidade lógica das consultas. 

Pourreza et al., (2024) introduz o modelo CHASE-SQL, que aborda a geração 

de consultas SQL a partir de linguagem natural por meio de raciocínio de múltiplos 

caminhos e otimização de seleção de candidatos. O CHASE-SQL é projetado para 

lidar com a complexidade das consultas SQL, onde múltiplos caminhos de raciocínio 

podem ser necessários para chegar à resposta correta. O modelo visa melhorar a 

precisão na geração de SQLs, especialmente em cenários onde a pergunta requer um 

raciocínio mais complexo e consideração de preferências na seleção de candidatos. 

Em contraste com essa proposta arquitetural, o presente trabalho não incorpora 

mecanismos explícitos de raciocínio múltiplo, mas fornece evidências empíricas de 

que a complexidade estrutural do schema exerce influência comparável ou superior à 

complexidade da pergunta sobre o desempenho dos modelos. Os autores propuseram 

uma abordagem que integra técnicas de raciocínio múltiplos caminhos para explorar 

diversas interpretações de uma pergunta em linguagem natural, permitindo que o 

modelo considere diferentes possibilidades ao gerar a consulta SQL. Além disso, o 

modelo é otimizado para selecionar candidatos mais relevantes, minimizando o 

número de tentativas incorretas antes de chegar à resposta certa. Essa metodologia 

busca melhorar a eficiência do processo de geração de SQL e aumentar a robustez 

do modelo em relação a perguntas complexas.  
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CHESS, apresentado por Talaei et al. (2024), propõe uma síntese eficiente de 

SQL, integrando informações contextuais para melhorar a interpretação das intenções 

do usuário. Os resultados experimentais demonstram que o CHESS gera consultas 

SQL de qualidade, superando modelos anteriores que não utilizavam contexto de 

forma eficaz.  

Por fim, Dong et al. (2024) apresentam o modelo C3, que utiliza o ChatGPT 

em um cenário de zero-shot. Os autores investigaram a capacidade do ChatGPT de 

gerar consultas SQL precisas a partir de perguntas em linguagem natural, mesmo sem 

treinamento específico em conjuntos de dados relacionados a SQL. O objetivo do 

estudo é avaliar se um modelo de linguagem amplamente treinado pode ser adaptado 

para realizar a conversão de linguagem natural para SQL sem necessidade de 

exemplos específicos durante o treinamento.  

A abordagem zero-shot do C3 permite que o modelo utilize seu conhecimento 

prévio sobre a estrutura da linguagem e a lógica de consultas SQL para interpretar e 

responder a perguntas em linguagem natural. Os autores testaram o modelo em uma 

variedade de conjuntos de dados e casos de uso, analisando seu desempenho em 

termos de precisão e adequação das consultas geradas.  

Os resultados mostraram que o C3 alcançou resultados competitivos, 

mostrando que o ChatGPT pode ser uma ferramenta eficaz para Text-To-SQL em 

situações em que dados de treinamento específicos não estão disponíveis. Além 

disso, o estudo destaca as vantagens da flexibilidade e da generalização dos modelos 

de linguagem em tarefas de geração de consultas SQL, abrindo novas possibilidades 

para a aplicação de modelos de linguagem em cenários práticos. Esses estudos 

ressaltam a evolução contínua das técnicas de Text-To-SQL, destacando a 

importância de considerar as especificidades linguísticas e contextuais para aprimorar 

a eficácia dessas abordagens. Alinhado a essa abordagem, o presente trabalho 

também adota um cenário zero-shot, porém amplia a análise ao considerar múltiplas 

combinações de idioma e estrutura de banco de dados, permitindo identificar 

condições específicas nas quais o desempenho dos modelos é favorecido ou 

degradado. 
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3.4.2 Respostas às perguntas norteadoras 

 

A análise realizada sobre os trabalhos publicados nos últimos cinco anos 

confirma a existência de, pelo menos, sete publicações relacionadas à transformação 

de linguagem natural em consultas SQL, no período de 2019 a 2024. Entre essas 

publicações destacam-se os trabalhos de Marcos M. José (2022), Marcelo Archanjo 

José e Fábio Gagliardi Cozman (2021), Gao (2023), Pourreza (2024), Talaei (2024), 

Maamari (2024), Dong (2024) e Garcia (2024). Esses estudos representam uma 

evolução contínua e demonstram o crescimento do interesse acadêmico pela área, 

atendendo ao critério de quantidade mínima exigida para responder à questão. 

No contexto da escrita em língua portuguesa, foi identificado que pelo menos 

três trabalhos explicitam o desenvolvimento ou adaptação de modelos para atender a 

esse idioma. O estudo de José et al. (2022) explora a integração de sistemas de 

Pergunta e Resposta (QA) com Text-To-SQL para a língua portuguesa, abrindo 

possibilidades de consultas em bancos de dados por meio de linguagem natural nesse 

idioma. Já o trabalho de José e Cozman (2021) apresenta o mRAT-SQL+GAP, um 

modelo robusto para tradução de linguagem natural para SQL em português 

As bases de dados mais comumente utilizadas para treinamento e 

customização de modelos voltados à transformação de texto em consultas SQL 

incluem, majoritariamente, o Spider proposta por Yu et al. (2018). Esta base é 

amplamente reconhecida por sua diversidade e abrangência, contendo mais de 10 mil 

consultas SQL complexas, aproximadamente 10 mil sentenças em linguagem natural 

e 200 esquemas de banco de dados. 

Quanto aos modelos de linguagem natural mais frequentemente empregados 

em tarefas de transformação de texto em consultas SQL, diversos se destacam na 

literatura recente. O mRAT-SQL+GAP, desenvolvido por José e Cozman (2021), se 

sobressai pela alta precisão alcançada na tradução de linguagem natural para SQL 

em português. Outro modelo relevante é o CHASE-SQL (POURREZA et al., 2024), 

que se baseia em raciocínio multipath e demonstra melhorias significativas em 

perguntas mais complexas. Já o CHESS (TALAEI et al., 2024) apresenta integração 

de informações contextuais, superando modelos anteriores na qualidade das 

consultas geradas. Por fim, o modelo C3 (Dong et al., 2024) explora a abordagem 

zero-shot com o ChatGPT, evidenciando o potencial de modelos amplamente 

treinados para gerar consultas SQL com precisão mesmo sem ajustes específicos. 
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Esses modelos representam avanços significativos no campo, cada qual com suas 

peculiaridades e áreas de aplicação específicas. 

Em termos de modelo de base, o mRAT-SQL+GAP é um parser neural 

supervisionado derivado do RAT-SQL+GAP, cujo núcleo usa um codificador 

transformer (mBART) treinado/fine-tuned com dados anotados (Spider traduzido), 

portanto não é zero-shot por desenho. Já o CHASE-SQL é um arranjo multiagente 

que orquestra LLMs em tempo de inferência (divide-and-conquer, chain-of-thought, 

exemplos sintéticos) e emprega um seletor treinado; não define um único LLM “base”, 

mas uma arquitetura que pode usar diferentes LLMs geradores e um modelo de 

seleção fine-tuned. O CHESS também é um framework multiagente baseado em LLM 

(recuperação de contexto, seleção de esquema, geração e testes de unidade), 

pensado para escalabilidade e privacidade, novamente sem fixar um único modelo 

base — ele “pluga” LLMs abertos ou proprietários conforme o cenário. Por fim, o C3 é 

explicitamente zero-shot e tem como modelo de base o ChatGPT (família GPT-3.5/4), 

apoiando-se apenas em engenharia de prompt e calibradores de saída, sem fine-

tuning em dados Text-to-SQL. 

 Dentre as técnicas e modelos analisados, o C3 é o que mais se alinha ao 

escopo deste projeto por adotar geração de SQL em regime zero-shot com o 

ChatGPT, valendo-se apenas de instruções padronizadas e sem ajuste fino específico 

em corpora de Text-to-SQL. Essa opção coincide com nossa estratégia experimental, 

que controla idioma e modelagem do banco (esquema estrela e tabela única) e exige 

apenas a emissão de SQL compatível com SQLite. Assim, tomamos o C3 como 

referência conceitual para o delineamento dos prompts e do protocolo de avaliação; 

em seguida, seguiremos com testes sistemáticos usando outros modelos de base 

para comparação, mantendo o regime zero-shot. 

 

 AMEAÇAS A VALIDADE 

 

Esta pesquisa apresenta algumas limitações em potencial que devem ser 

consideradas ao interpretar os resultados. Primeiramente, os mecanismos de busca 

utilizados nos anais dos eventos podem ter influenciado os resultados obtidos. A 

eficácia e abrangência desses mecanismos de busca podem variar, potencialmente 

levando à omissão de trabalhos relevantes. 
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Em segundo lugar, o processo de extração e classificação dos dados 

envolveu intervenção humana, o que introduz a possibilidade de erro humano e viés. 

Apesar dos esforços para garantir a precisão e consistência, a subjetividade inerente 

à interpretação e categorização dos dados pode ter afetado os resultados. 

Os trabalhos mapeados mostram que a área evoluiu em modelos e técnicas, 

mas permanece dependente de benchmarks em inglês e raramente avalia, de modo 

controlado, o impacto do idioma e da modelagem do banco. Estudos como Spider 

impulsionam a pesquisa, porém não cobrem o português nem comparam 

sistematicamente esquema estrela e tabela única; trabalhos focados em PT avançam 

no modelo, mas não oferecem uma base ampla, bilíngue e reprodutível. Essa 

combinação de lacunas se conecta diretamente ao objetivo deste estudo: criar um 

artefato que permita testar, sob condições comparáveis, como idioma e modelagem 

influenciam a geração de SQL por LLMs em regime zero-shot. Assim, os achados da 

literatura motivam a construção de uma base bilíngue em SQLite com variantes em 

estrela e em tabela única e um conjunto de perguntas com SQL de referência nos dois 

idiomas, além de prompts padronizados para reduzir vieses de engenharia de prompt. 

Esses elementos respondem às ausências observadas no estado da arte e fornecem 

um terreno comum para que diferentes modelos possam ser avaliados com clareza 

quanto a idioma e estrutura do esquema. 
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 TEXT-TO-SQL EM ZERO-SHOT SOBRE DADOS PÚBLICOS 

 

 Este capítulo apresenta e contextualiza o desenvolvimento do estudo, iniciando 

pela problemática que motiva a investigação. Embora os portais de transparência e 

catálogos de dados abertos tenham ampliado o acesso à informação pública, a 

extração de respostas específicas ainda pressupõe domínio de classificações 

orçamentárias, compreensão de dicionários de dados e capacidade de escrever 

consultas SQL corretas. Para o público leigo, essa combinação de exigências técnicas 

funciona como barreira de entrada, o que limita a apropriação social dos dados e 

restringe seu uso em rotinas de análise, fiscalização e tomada de decisão. 

Para enfrentar esse problema, este trabalho propõe e materializa um ambiente 

de avaliação composto por uma base de testes e um conjunto de prompts e questões 

em linguagem natural destinados a aferir o desempenho de diferentes modelos de 

linguagem em Text-To-SQL. A base utiliza dados orçamentários reais do Estado de 

Santa Catarina e foi organizada em duas representações complementares, um 

esquema estrela e uma tabela única, com versões bilíngues de esquemas e rótulos 

para permitir o controle do fator idioma. O conjunto de questões foi elaborado com 

SQL de referência e verificação por execução, inspirado na tradição de benchmarks 

como o Spider, de modo a cobrir operações recorrentes em consultas públicas, 

incluindo seleção, filtragens temporais e por classificações, junções dimensionais e 

agregações usuais no domínio. 

Os experimentos foram conduzidos em regime zero-shot, sem ajuste fino, 

exclusivamente com modelos abertos viáveis de operar em infraestrutura local. A 

avaliação emprega uma métrica única de acurácia composta, adotada em todo o 
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projeto, segundo a qual uma saída é considerada correta apenas quando alcança 

simultaneamente equivalência de resultados em execução e correspondência 

semântica e estrutural com o SQL de referência. Esse desenho experimental isola os 

efeitos do idioma e do desenho do banco e permite comparar, de forma direta, como 

diferentes LLMs respondem às variações de cenário típicas do uso em dados público. 

Sendo assim, as seções seguintes detalham a construção da base e do conjunto de 

questões, apresentam o protocolo experimental e a infraestrutura de execução 

 

 

 CONSTRUÇÃO DA BASE DE DADOS 

 

A construção da base de dados bilíngue representou um dos resultados mais 

relevantes desta pesquisa pois viabiliza os experimentos de avaliação dos modelos 

de linguagem. A criação dessa base teve como propósito fornecer um ambiente 

controlado e representativo de consultas reais em contexto governamental, permitindo 

a análise de desempenho de diferentes arquiteturas de LLMs sob condições 

estruturais e linguísticas distintas. 

Os dados utilizados foram extraídos do Portal da Transparência do Governo 

do Estado de Santa Catarina9, abrangendo registros de despesas orçamentárias 

realizadas entre janeiro e abril de 2025, apresenta-se uma amostra do arquivo original 

na Tabela 1, com uma fração do conjunto de dados, apenas algumas tabelas foram 

transcritas para melhor visualização. Essa escolha se deve ao caráter público e 

verificável das informações, bem como à sua estrutura que oferece um cenário realista 

para a tarefa de conversão de linguagem natural em SQL. O conjunto original continha 

dados sobre órgãos, funções, subfunções, programas, naturezas de despesa, fontes 

de recurso, valores financeiros, entre outros. 

 

Tabela 1 – Dados do Portal da Transparência com colunas selecionadas 

Ano 

Nro 

Mês Mês 

Código 

Órgão Órgão 

Vl 

Empenhado 

Vl 

Liquidado Vl Pago  

2025 4 Abril 48000 Secretaria de Estado da Saúde                                                                                                                          R$ 0,00 

R$ 

6.184,90 R$ 1.810,70 

 
9 Dados abertos pelo link https://www.transparencia.sc.gov.br/dados-

abertos/32/subareainteresse/35 

https://www.transparencia.sc.gov.br/dados-abertos/32/subareainteresse/35
https://www.transparencia.sc.gov.br/dados-abertos/32/subareainteresse/35
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2025 4 Abril 34000 

Secretaria de Estado da 

Comunicação R$ 0,00 

R$ 

7.344,25 R$ 7.344,25 

2025 4 Abril 15000 

Defensoria Pública do Estado de 

Santa Catarina R$ 212,00 R$ 0,00 R$ 0,00 

2025 4 Abril 29000 

Secretaria de Estado de Portos, 

Aeroportos e Ferrovias                                                                                                 

R$ 

55.208,00 

R$ 

55.208,00 R$ 55.208,00 

2025 4 Abril 45000 

Secretaria de Estado da 

Educação                                                                                                                       R$ 0,00 

R$ 

8.950,00 R$ 8.950,00 

Fonte: elaborado pelo autor 

  

 O processo de construção da base foi dividido em quatro etapas principais. A 

primeira consistiu na coleta e limpeza dos dados, realizada por meio de scripts de 

extração do arquivo CSV disponibilizado pelo portal da transparência.  

 

Figura 3 - Representação das tabelas únicas em português e inglês com campos reduzidos 

  

Fonte: Elaborado pelo Autor 

 

A segunda etapa compreendeu a modelagem da estrutura relacional, que deu 

origem a duas configurações distintas de banco de dados. Na primeira, adotou-se um 

modelo em esquema estrela, composto por uma tabela fato central — denominada 

fato_despesa — e múltiplas tabelas dimensionais correspondentes a atributos 

descritivos, como tempo, orgao, funcao, subfuncao e programa. Essa estrutura foi 

projetada de modo a refletir a organização típica de bases analíticas empregadas em 

ambientes de business intelligence e de controle público. Na segunda configuração, 
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elaborou-se um modelo de tabela única, denominado fato_despesa, no qual todos os 

atributos foram agregados em uma mesma tabela não normalizada. Essa duplicidade 

estrutural foi planejada para permitir a comparação entre cenários de diferentes níveis 

de complexidade, possibilitando verificar o impacto da modelagem sobre a capacidade 

de interpretação e geração de consultas pelos modelos de linguagem. A Figura 4 

ilustra, lado a lado, um recorte da tabela única em português, com medidas 

orçamentárias e rótulos administrativos, e o núcleo da tabela fato em inglês com 

medidas homólogas, o que evidencia a equivalência semântica entre as variantes. 

 

Figura 4 - Representação das tabelas no modelo estrela em português e inglês com campos reduzidos 

 

Fonte: Elaborado pelo Autor 

 

A terceira etapa envolveu a tradução integral dos esquemas de dados para o 

idioma inglês, resultando em um conjunto bilíngue de tabelas e colunas. Nessa fase, 

os nomes das variáveis foram traduzidos de forma técnica, preservando o significado 

original e garantindo a correspondência semântica entre as versões. Por exemplo, os 

campos orgao, funcao e subfuncao foram traduzidos para agency, function e 

subfunction, respectivamente, enquanto fato_despesa foi convertida em 

expense_fact. A Figura 5 apresenta uma visão relacional do esquema estrela em 
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ambos os idiomas, destacando as relações entre a tabela fato e dimensões como 

tempo e órgão, com chaves primárias e estrangeiras assinaladas. Esse processo 

permitiu a criação de quatro variações completas de schema: (i) estrela em português, 

(ii) estrela em inglês, (iii) tabela única em português e (iv) tabela única em inglês, as 

Figuras 4 e 5 materializam esse mapeamento e permitem ao leitor verificar a 

correspondência terminológica e estrutural utilizada nos testes, porém não 

representam na totalidade todos os campos e tabelas mapeados, para isso pode se 

recorrer aos apêndices B, C, D e E de forma descrita e nos apêndices J, K, L e M para 

visualizar. 

A quarta e última etapa consistiu na implementação e validação dos bancos 

de dados, realizada em ambiente SQLite. Foram definidas chaves primárias e 

estrangeiras, restrições de integridade e índices básicos para garantir o 

funcionamento relacional adequado das tabelas do modelo estrela. A base final 

resultante contém aproximadamente 134 mil registros de despesas públicas, 

estruturados de forma consistente nas quatro versões mencionadas. 

Como produto complementar à estrutura física, foi desenvolvido um conjunto 

bilíngue de cinquenta perguntas em linguagem natural, inspirado em padrões do 

benchmark Spider e adaptado ao contexto das finanças públicas brasileiras. Cada 

pergunta foi redigida em português e traduzida para o inglês, acompanhada de sua 

consulta SQL de referência. O conjunto final totaliza duzentos pares de pergunta e 

SQL, distribuídos entre as quatro combinações possíveis de idioma da questão e 

idioma do esquema de dados. Para tornar concreta a ideia de equivalência semântica 

entre variações de idioma e de modelagem, a Tabela 2 apresenta a aplicação de uma 

mesma pergunta nas quatro configurações. A pergunta busca identificar a ação com 

maior valor total de dotação inicial no ano de 2025; para garantir comparabilidade 

entre estruturas, as consultas foram harmonizadas por agregação e ordenação do 

somatório do valor de dotação, de modo que as diferenças entre versões decorram 

apenas de nomes de tabelas e colunas e da necessidade de junções no modelo 

estrela. 

 

Tabela 2 - Aplicação de uma mesma questão nas diferentes estruturas 

Domínio 
Questão em 
português 

Questão em inglês Sql Correspondente 
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Modelo 
estrela em 
português 

 

Qual a ação com 
maior valor de 

dotação inicial em 
2025? 

What is the action 
with the highest 

initial appropriation 
in 2025? 

SELECT a.nome_acao 
FROM fato_despesa f 

JOIN acao a ON f.cod_acao  = 
a.cod_acao 

JOIN tempo t on f.tempo_id = t.id 
WHERE t.ano = 2025 

ORDER BY f.vl_dotacao_inicial 
DESC LIMIT 1; 

Domínio 
Questão em 
português 

Questão em inglês Sql Correspondente 

Tabela 
única em 
português 

Qual a ação com 
maior valor de 

dotação inicial em 
2025? 

What is the action 
with the highest 

initial appropriation 
in 2025? 

SELECT acao, 
MAX(vl_dotacao_inicial) 

FROM despesas_consolidadas 
WHERE ano = '2025'; 

Modelo 
estrela em 

inglês 

Qual a ação com 
maior valor de 

dotação inicial em 
2025? 

What is the action 
with the highest 

initial appropriation 
in 2025? 

SELECT ac.action_name 
FROM expense_fact ef 

JOIN action ac ON 
ef.action_code = ac.action_code  
JOIN time t ON ef.time_id = t.id  

WHERE t.year = 2025  
ORDER BY 

ef.initial_budget_value DESC 
LIMIT 1; 

Tabela 
única em 

inglês 

Qual a ação com 
maior valor de 

dotação inicial em 
2025? 

What is the action 
with the highest 

initial appropriation 
in 2025? 

SELECT action_name, 
MAX(initial_budget_value) FROM 

expense_fact 
WHERE year = '2025'; 

Fonte: Elaborado pelo Autor 

 

A inclusão desta tabela no corpo do capítulo reforça a integração entre texto 

e figuras anteriormente apresentadas. As Figuras 4 e 5 ilustram, respectivamente, as 

versões condensadas em tabela única e a organização em esquema estrela, em 

português e em inglês. A Tabela 2 coloca essas representações em operação por 

meio de uma pergunta concreta, evidenciando que, no modelo estrela, a obtenção do 

mesmo resultado exige junções com dimensões como ação e tempo, enquanto, na 

tabela única, a agregação pode ser feita diretamente sobre colunas não normalizadas. 

Essa articulação entre visualizações e exemplo executável documenta a equivalência 

semântica entre variantes e demonstra a adequação do material para avaliar, em 

cenário zero-shot, a sensibilidade dos modelos de linguagem às escolhas de idioma 

e de modelagem. 

O resultado dessa construção constitui uma contribuição para a pesquisa em 

Text-To-SQL, pois disponibiliza um conjunto de dados bilíngue, estruturado e 
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representativo de um domínio público real. Diferentemente de benchmarks 

tradicionais, como o Spider, que se concentram em bases genéricas e no idioma 

inglês, a base aqui desenvolvida reflete as especificidades da administração pública 

brasileira e permite avaliar a performance dos modelos em condições multilíngues e 

institucionais. Além de servir como instrumento experimental deste trabalho, essa 

base estabelece fundamentos para estudos futuros de fine-tuning e de geração de 

SQL em língua portuguesa, com potencial de reuso em aplicações voltadas à 

transparência e ao acesso automatizado a dados governamentais. 

Para assegurar transparência e reprodutibilidade, todo o material desta base 

de questões e respostas — compreendendo a base de dados de despesas públicas, 

os esquemas em estrela e em tabela única, o conjunto de questões bilíngues, bem 

como os scripts de preparação — encontram-se disponibilizados em repositório 

público por meio da plataforma online github10.  

 

 CONSTRUÇÃO DO PROMPT 

 

A formulação do prompt adotado nesta pesquisa buscou maximizar a 

conformidade estrutural das saídas e reduzir a variabilidade típica de respostas em 

linguagem natural, de modo a induzir a geração de um único comando SQL válido 

para o dialeto SQLite, em regime zero-shot e sob diferentes condições linguísticas. 

Em linha com os princípios discutidos na fundamentação (seção 2.4.9), a estratégia 

combinou: i) instrução explícita de papel e de formato de saída; ii) delimitação concisa 

do contexto relevante por meio da serialização do esquema do banco; iii) restrição 

forte para que o modelo não produza explicações, comentários ou múltiplas consultas; 

e iv) sentinela de término (ponto e vírgula) para facilitar a validação programática da 

resposta. Foram empregadas duas variantes semanticamente equivalentes do 

prompt, uma em português e outra em inglês, a fim de avaliar o comportamento em 

quatro combinações de idioma entre pergunta e esquema (PT–PT, EN–EN, PT–EN, 

EN–PT). 

No cerne do desenho está a ancoragem explícita no dialeto: declara-se que o 

sistema é um “gerador de SQL para SQLite”, reduzindo ambiguidade sobre funções e 

operadores disponíveis. Em seguida, a pergunta do usuário e o esquema do banco 

 
10 Link de acesso à base de dados https://github.com/Jonasorso/Despesas_Sc_Text-To-Sql 
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de dados são inseridos como contexto imediato, sem exemplos adicionais (zero-shot), 

e a instrução prescritiva determina que apenas um comando SQL, terminado por “;”, 

deve ser retornado. Acrescenta-se ainda a orientação “não tente calcular valores”, 

cujo objetivo é evitar que o modelo apresente resultados numéricos “resolvidos” (por 

exemplo, somatórios computados pelo próprio modelo), em vez de produzir a consulta 

correspondente. Para mitigar ruídos de pontuação, a interrogação final da pergunta é 

removida e reintroduzida de forma controlada, prevenindo duplicação de sinais que 

alguns modelos interpretam como marcadores de encerramento de turno. 

Os textos abaixo reproduzem os templates efetivamente utilizados (variáveis 

schema e question são interpoladas no momento da inferência): 

 

Quadro 1 - Exemplo de prompt base em português 

Português (PT) 
"Você é um gerador de SQL para SQLite. " 
"Não tente calcular valores, apenas gerar um comando SQL" 
"Dada a pergunta e o esquema do banco de dados abaixo, gere **apenas 

UM comando SQL válido**, sem explicações ou texto extra. O comando deve 
terminar com ponto e vírgula `;`. Não escreva nada além do SQL.. " 

f"Esquema do banco de dados:\n{schema} " 
f"Escreva um comando sql valido para a pergunta com base no schema: 

{question.replace('?', '')}? " 
"SQL: ###Resposta: " 

 
Fonte: Elaborado pelo Autor 

Quadro 2 - Exemplo de prompt base em inglês 

Inglês (EN) 
"You are an SQL generator for SQLite." 
"Given the question and the database schema below, generate only **ONE** valid 
SQL command,with no extra explanations or text. The command must end with a 
semicolon ';'. Do not write anything other than the SQL." 
f"Database schema:\n{schema} " 
f"Write an SQL command for the question: {question.replace('?', '')}? " 
"SQL: ###Response: " 

Fonte: Elaborado pelo Autor 

 

Alguns pontos merecem registro por seu impacto na qualidade e na 

mensurabilidade dos resultados. Primeiro, a presença de rótulos como “SQL: 

###Resposta / ###Response” ao final do prompt foi pensada como um marcador 

semântico do bloco de saída; todavia, certos modelos tendem a ecoar esses rótulos 

no texto gerado. Para garantir a aderência à métrica de acurácia de execução, 

implementou-se pós-processamento mínimo que remove eventuais prefixos 
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alfanuméricos antes do primeiro token SQL reconhecível, valida o ponto e vírgula final 

e rejeita saídas múltiplas. Segundo a serialização do esquema é deliberadamente 

compacta e imediata, evitando descrições narrativas; como discutido na 

fundamentação, isso favorece o schema linking ao expor exatamente os nomes de 

tabelas, colunas e chaves sobre os quais a consulta deve operar. Terceiro, por 

envolver português com diacríticos e termos administrativos, o prompt não força aspas 

ou normalização de identificadores; em vez disso, confia na nomenclatura tal como 

definida no catálogo. Na prática, observou-se que modelos que preservam fielmente 

a grafia dos identificadores minimizam erros sintáticos; por essa razão, a avaliação 

exige correspondência literal com o esquema fornecido. 

As duas variantes linguísticas são paralelas em estrutura e restrições, 

diferindo apenas no idioma das instruções. Essa duplicação permite separar o efeito 

do idioma do enunciado do efeito do idioma do esquema, preservando constante o 

“molde” pragmático do prompt. Em cenários cruzados (por exemplo, pergunta em 

português e esquema em inglês), a instrução permanece no idioma do enunciado para 

reduzir fricção cognitiva do modelo entre instrução e conteúdo; nas combinações 

homogêneas (PT–PT, EN–EN), todo o contexto permanece monolíngue. Em todos os 

casos, a referência explícita a SQLite orienta escolhas de funções nativas (por 

exemplo, date, agregações padrão) e evita derivações de outros dialetos. 

Por fim, a construção do prompt foi guiada por dois objetivos metodológicos: 

reprodutibilidade e mensuração objetiva. A prescrição de “apenas um” comando, a 

sentinela “;” e a ausência de explicações textuais viabilizam uma checagem binária 

simples (executa e retorna o gabarito, ou não), ao passo que a inclusão do esquema 

como único contexto técnico reduz alucinações sobre objetos inexistentes. Essa 

configuração mantém o regime zero-shot, controla a variância de formato entre 

modelos e estabelece um ponto de comparação estável para analisar diferenças de 

desempenho decorrentes de idioma e de estrutura de banco (tabela única versus 

estrela).  

Desta forma os Apêndices F, G, H e I registram integralmente os prompts 

utilizados nos experimentos, contemplando as duas modelagens de dados e os dois 

idiomas adotados. Os Apêndices F e G apresentam, respectivamente em português e 

em inglês, o prompt para a variante em tabela única, enquanto os Apêndices H e I 

reúnem os prompts para o esquema estrela, também em português e em inglês. Em 

todos os casos, o enunciado fixa o contexto de geração em SQLite, impõe a produção 
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de um único comando SQL válido, sem texto adicional, e incorpora o esquema 

correspondente como parte do próprio prompt, assegurando que a tarefa seja avaliada 

em condições equivalentes entre idiomas e estruturas. 

 Este capítulo apresentou a construção da base de dados, as variantes de 

modelagem e o protocolo de prompts adotado para a avaliação. Nas seções 

seguintes, são expostos os resultados obtidos e desenvolvida a análise crítica desses 

valores, discutindo implicações, limitações e efeitos do idioma e do esquema na 

qualidade das consultas geradas. 
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 EXPERIMENTOS E RESULTADOS 

 

Para validar a base e os prompts construídos, esta seção introduz o conjunto 

de experimentos realizados e os resultados obtidos na análise do desempenho de 

modelos de linguagem de grande escala na tarefa de geração de consultas SQL a 

partir de linguagem natural. A avaliação incide sobre as quatro combinações entre 

idioma do enunciado e idioma do esquema e sobre as duas estruturas de dados 

propostas, de modo a estimar o efeito conjunto de escolhas linguísticas e de 

modelagem na qualidade das saídas. Mantém-se o regime zero-shot, com o prompt 

único descrito na seção anterior 4.2 e a métrica de acurácia adotada como critério de 

correção, de forma a garantir comparabilidade direta entre cenários. 

À luz da fundamentação, o trabalho C3 foi tomado como referência conceitual 

por formalizar a geração de SQL em regime zero-shot com instruções padronizadas. 

Contudo, por utilizar o ChatGPT — serviço pago — sua adoção direta contrariaria os 

objetivos de reprodutibilidade e de execução local deste estudo. Assim, optou-se por 

operacionalizar os mesmos princípios do C3 em um cenário aberto: inferência zero-

shot, sem fine-tuning, com prompt único e controle explícito de idioma e de 

modelagem do banco, mas empregando modelos de abertos executados localmente. 

A seleção de Qwen, Gemma, Gaia, OpenChat e DeepSeek decorre, portanto, 

de uma convergência entre coerência metodológica e viabilidade prática. Mantiveram-

se modelos com distribuição oficial no Hugging Face, variantes instrucionais e suporte 

efetivo a português ou a cenários multilíngues, além de porte compatível com a 

infraestrutura disponível. Todos os experimentos foram conduzidos em um único nó 

com Intel Core i5-13500, 32 GiB de RAM, SSD NVMe de 512 GB e GPU NVIDIA RTX 

5000 Ada dedicada à inferência, o que impôs a faixa de 1,5 a 7 bilhões de parâmetros. 

As chamadas de inferência foram realizadas preservando integralmente o regime 

zero-shot. Em conjunto, esses modelos materializam, em ambiente aberto e 

replicável, a lógica zero-shot inspirada no C3, permitindo avaliar de forma controlada 

os efeitos de idioma e de esquema sobre a qualidade do SQL gerado. 

A família Gemma foi representada pela distribuição google/gemma-3-4b-pt11, 

variante instrucional com aproximadamente quatro bilhões de parâmetros e vocação 

explícita para o português. A documentação pública de Gemma 3 registra tamanhos 

 
11 Disponível em: https://huggingface.co/google/gemma-3-4b-pt 

https://huggingface.co/google/gemma-3-4b-pt
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oficiais e o posicionamento da linha como modelos leves e multimodais, adequados a 

implantação em ambientes com recursos limitados, o que atende diretamente ao 

cenário computacional desta pesquisa. 

 O OpenChat foi empregado na distribuição openchat/openchat-3.5-121012. 

Trata-se de um modelo instrucional amplamente divulgado como tendo cerca de 7 

bilhões de parâmetros, com ênfase em instruções de uso geral e em desempenho 

robusto em tarefas de geração. A disponibilidade de quantizações comunitárias 

favorece a reprodução em GPUs de memória intermediária, mantendo-o dentro da 

capacidade computacional do experimento sem comprometer o regime zero-shot 

adotado. Essa escolha contribui para o contraste entre uma linhagem instrucional 

generalista, de porte um pouco maior, e variantes menores especializadas em 

português ou em raciocínio. 

 Para a dimensão de especialização linguística em português do Brasil, adotou-

se o CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it13, resultante de pré-treinamento 

contínuo e ajuste instrucional sobre o google/gemma-3-4b-pt. A model card pública 

descreve o processo de adaptação e o foco na produção de saídas alinhadas ao PT-

BR, mantendo 4B de parâmetros, o que facilita o controle de variáveis quando 

comparado ao Gemma original e preserva a compatibilidade com o ambiente de 

inferência local. 

 A série Qwen foi representada pelo Qwen/Qwen3-4B-Instruct-2507-FP814, uma 

variante instrucional de aproximadamente quatro bilhões de parâmetros 

disponibilizada em precisão FP8. A própria página do modelo destaca o perfil de 

inferência sugerido e as recomendações de amostragem, e a opção por FP8 foi 

decisiva para reduzir o consumo de memória e aumentar a vazão de tokens sem 

degradar a estrutura de saída, circunstância particularmente útil nos cenários de 

perguntas mais longas e nos esquemas com maior cardinalidade. Além de preservar 

a exigência de pesos abertos e execução local, o Qwen 3 reforça a dimensão 

multilíngue discutida na fundamentação. 

 Por fim, incluiu-se o deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B15, um 

modelo de aproximadamente 1,5 bilhão de parâmetros obtido por destilação a partir 

 
12 Disponível em: https://huggingface.co/openchat/openchat-3.5-1210 
13 https://huggingface.co/CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it 
14 https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507-FP8 
15 https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B 

https://huggingface.co/openchat/openchat-3.5-1210
https://huggingface.co/CEIA-UFG/Gemma-3-Gaia-PT-BR-4b-it
https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507-FP8
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
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da linha R1, com ênfase em raciocínio passo a passo e custo de inferência muito 

baixo. Essa variante funciona, no desenho experimental, como um contraponto de 

“porte mínimo” frente aos modelos de 4B e ao OpenChat de 7B, permitindo observar 

empiricamente como a capacidade paramétrica interage com restrições de prompt 

rígidas e com os diferentes níveis de complexidade relacional entre tabela única e 

esquema estrela. 

 O cenário de testes foi mantido constante para todas as famílias: geração de 

uma única instrução SQL para SQLite, sem explicações, a partir do mesmo prompt, 

com serialização concisa do esquema e sem qualquer amostra adicional no contexto. 

Avaliaram-se quatro combinações linguísticas entre pergunta e esquema (PT–PT, 

EN–EN, PT–EN, EN–PT), em duas estruturas de banco de dados construídas 

especificamente para este estudo, refletindo domínios e hierarquias da despesa 

pública e oferecendo contraste entre desnormalização extrema (tabela única) e 

desenho dimensional (esquema estrela). A adoção do regime zero-shot permite isolar 

a contribuição do pré-treinamento e do alinhamento instrucional de cada família, 

conforme discutido na fundamentação sobre zero-shot, few-shot e fine-tuning. 

 

 PIPELINE DO EXPERIMENTO 

 

 Esta seção descreve o fluxo experimental numerado na Figura 5 e organiza a 

apresentação de uma questão exemplificadora ao longo de todo o percurso, 

assegurando comparabilidade entre estruturas, idiomas e modelos. 

 Na etapa 1, o processo inicia com a formulação da questão em linguagem 

natural no domínio orçamentário. Adota-se uma redação livre acerca da base de 

dados, preservando a semântica entre as versões em português e em inglês quando 

aplicável. Nesta fase registra-se o enunciado que será utilizado no experimento, com 

a indicação do período de referência e do contexto administrativo. Neste experimento 

existe um ambiente controlado, com as questões já estabelecidas, porém neste 

momento quando aplicado a um ambiente real, a pessoa liberdade para discorrer 

acerca de qualquer questão. 

 Na etapa 2, a questão é estabilizada em versão bilíngue para permitir a 

avaliação cruzada entre idioma do enunciado e idioma do esquema. Mantém-se 

equivalência semântica estrita entre as duas formulações, evitando escolhas lexicais 
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que privilegiem um idioma em detrimento do outro. É neste ponto que se fixa a 

pergunta que perpassará todas as combinações subsequentes. 

 

 

Figura 5 - Sequência de atividades 

 

Fonte: Elaborado pelo Autor (2025) 

 

 Na etapa 3, procede-se à construção do prompt. O enunciado é incorporado ao 

molde prescritivo definido no capítulo 4.2, com ancoragem explícita no dialeto SQLite, 

inclusão do esquema como contexto técnico e instrução para produzir um único 

comando SQL válido, sem texto adicional. Nesta etapa são apresentados os templates 

finais em português e em inglês, com a interpolação da pergunta e do esquema alvo 

utilizados na execução. 
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 Na etapa 4, o experimento é organizado em oito combinações resultantes do 

cruzamento entre modelagem de dados, idioma do esquema e idioma do enunciado. 

As quatro variantes de esquema — esquema estrela em português, esquema estrela 

em inglês, tabela única em português e tabela única em inglês — são testadas com 

enunciados em português e em inglês, totalizando, para cada modelagem, dois 

cenários alinhados (PT–PT e EN–EN) e dois cenários cruzados (PT–EN e EN–PT). 

Para cada uma das oito combinações, disponibiliza-se o esquema efetivo e associa-

se um SQL de referência previamente validado por execução, como mencionado na 

seção 4.2, que funcionará como gabarito para a métrica de acurácia composta. 

 Na etapa 5, selecionam-se os modelos de base a serem avaliados, observando 

critérios de reprodutibilidade, porte compatível com execução local e disponibilidade 

de variantes instrucionais ou com foco em português. Todos operam em regime zero-

shot sob as mesmas condições de inferência, garantindo comparabilidade. Na etapa 

6, os modelos são aplicados às oito combinações definidas; cada modelo recebe o 

mesmo prompt da combinação correspondente e produz um comando SQL que é 

executado no banco respectivo.  

 Na etapa 7, consolida-se o julgamento segundo a métrica de acurácia 

composta. Uma saída é considerada correta apenas quando obtém simultaneamente 

equivalência de resultados em execução e correspondência semântica e estrutural 

com o SQL de referência. O registro final discrimina acertos e erros por modelo. Esse 

encadeamento, tal como sintetizado na Figura 5, permite acompanhar de maneira 

transparente o percurso da questão ao longo do pipeline, explicitando o papel do 

prompt, o impacto do idioma e do desenho do banco de dados e as diferenças de 

comportamento entre modelos em condições controladas. 

 

 

 DESEMPENHO NA ESTRUTURA DE TABELA ÚNICA 

 

 Na segunda configuração experimental, foi utilizada a estrutura de tabela única, 

na qual todos os atributos estão consolidados em uma única tabela não normalizada. 

Essa configuração reduz a necessidade de raciocínio relacional e simplifica a 

formulação das consultas SQL, o que se refletiu em um desempenho 

significativamente superior em todos os modelos testados. 
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Tabela 3 - Acurácia dos modelos na tabela única. 

Detentor do 

modelo 
Modelo 

Idioma da 

questão 

Idioma do 

schema de 

dados 

Acurácia (%) 

google gemma PT PT 64.00 

google gemma EN PT 53.37 

google gemma PT EN 60.94 

google gemma EN EN 41.30 

open openchat PT PT 50.03 

open openchat EN PT 47.93 

open openchat PT EN 42.49 

open openchat EN EN 46.60 

ceia gaia PT PT 60.87 

ceia gaia EN PT 54.35 

ceia gaia PT EN 63.64 

ceia gaia EN EN 54.55 

deepseek deepseek PT PT 68.75 

deepseek deepseek EN PT 60.84 

deepseek deepseek PT EN 52.27 

deepseek deepseek EN EN 48.00 

alibaba qwen PT PT 71.74 

alibaba qwen EN PT 56.49 

alibaba qwen PT EN 61.36 

alibaba qwen EN EN 47.73 

Fonte: Elaborado pelo autor (2025) 

 

Os resultados revelaram que o modelo Qwen novamente se destacou, 

atingindo 71,74% de acurácia na combinação PT–PT, seguido pelo DeepSeek, com 

68,75%, e pelo Gemma, com 64%. O Gaia apresentou desempenho de 60,87% na 

mesma configuração, enquanto o OpenChat manteve valores em torno de 50%. A 

superioridade dos modelos Qwen e DeepSeek sugere que arquiteturas mais recentes, 

treinadas em grandes volumes de dados multilíngues e técnicos, são mais capazes 

de compreender estruturas descritivas em português e realizar a correspondência 

semântica adequada entre texto e atributos de banco. 
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Figura 6 - Resultados por modelo para a Tabela única 

 

Fonte: Elaborado pelo autor (2025) 

 

 Além da melhora geral na acurácia, a estrutura de tabela única mostrou-se mais 

estável quanto à consistência sintática. O número de consultas inválidas ou não 

executáveis foi significativamente menor em comparação ao esquema estrela. A 

simplificação estrutural elimina a necessidade de raciocínio relacional e permite que 

os modelos se concentrem na identificação de atributos e operadores, resultando em 

maior precisão. Ainda assim, observou-se que as consultas que envolviam funções 

de agregação condicionais, como somatórios e médias filtradas, continuaram 

apresentando maior índice de erros lógicos, o que indica que a capacidade de 

raciocínio aritmético e de filtragem ainda constitui um desafio entre os modelos. 

 

 DESEMPENHO NA ESTRUTURA ESTRELA 

 

 O primeiro conjunto de experimentos considerou o modelo de dados no formato 

estrela, no qual a consulta correta depende da capacidade do modelo em 

compreender múltiplas relações entre tabelas e executar junções (joins) coerentes. 

Essa configuração representa um desafio mais complexo, pois exige não apenas o 

reconhecimento semântico da pergunta, mas também o raciocínio sobre chaves 

primárias, estrangeiras e relacionamentos. 
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Tabela 4 - Acurácia dos Modelos no formato Star Schema 

Detentor do 

modelo 
Modelo 

Idioma da 

questão 

Idioma do 

schema de 

dados 
Acurácia (%) 

google gemma PT PT 46.00 
google gemma EN PT 33.33 
google gemma PT EN 33.33 
google gemma EN EN 31.82 
open openchat PT PT 32.00 
open openchat EN PT 24.44 
open openchat PT EN 37.78 
open openchat EN EN 35.56 
ceia gaia PT PT 43.75 
ceia gaia EN PT 41.75 
ceia gaia PT EN 40.63 
ceia gaia EN EN 33.29 

deepseek deepseek PT PT 39.58 
deepseek deepseek EN PT 36.91 
deepseek deepseek PT EN 33.33 
deepseek deepseek EN EN 35.56 
alibaba qwen PT PT 56.25 
alibaba qwen EN PT 41.67 
alibaba qwen PT EN 60.00 
alibaba qwen EN EN 55.56 

Fonte: Elaborado pelo autor (2025) 

  

Os resultados obtidos demonstraram diferenças significativas entre os modelos 

avaliados. O Qwen, desenvolvido pela Alibaba, apresentou o melhor desempenho 

geral, atingindo 56,25% de acurácia na configuração em que tanto a pergunta quanto 

o schema estavam em português (PT–PT) e 60,00% na combinação PT–EN. Esses 

resultados indicam uma alta capacidade de adaptação multilíngue, além de um 

desempenho consistente mesmo quando a linguagem da pergunta e do schema não 

coincidem. O Gemma 3B, da Google, apresentou comportamento estável, com 

desempenho médio entre 31% e 46%, enquanto o modelo nacional Gaia, 

desenvolvido pelo CEIA/UFG, obteve resultados próximos a 44% na condição PT–PT. 

O DeepSeek, modelo de origem chinesa, demonstrou acurácia intermediária (cerca 

de 40% em PT–PT), mantendo coerência semântica nas consultas geradas, ainda que 

com maior propensão a erros de estrutura em junções complexas. O OpenChat, 

baseado em LLaMA, apresentou os resultados mais modestos, com valores variando 

entre 24% e 38% de acurácia, demonstrando limitações na manipulação de múltiplas 

tabelas e nas cláusulas de agrupamento. 
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Figura 7 - Resultados por modelo para o Esquema Estrela 

 

Fonte: Elaborado pelo autor (2025) 

 

 De modo geral, verificou-se que o desempenho dos modelos é afetado pela 

complexidade estrutural do esquema estrela. A presença de múltiplas tabelas e 

relacionamentos aumenta substancialmente o risco de erros estruturais e sintáticos. 

Em diversos casos, observou-se que os modelos geravam comandos SQL 

semanticamente coerentes, mas que não eram executáveis devido a erros em nomes 

de colunas ou em junções incorretas. Essa dificuldade foi mais evidente nas 

configurações em que o idioma da pergunta diferia do idioma do schema, 

evidenciando que a tradução implícita de termos técnicos, como “orgão”, “função” ou 

“subfunção”, ainda representa um desafio considerável para os LLMs em contextos 

bilíngues. 

 

 

 DESEMPENHO GERAL 

 

De modo consolidado, os resultados confirmam uma tendência: quanto menor 

a complexidade estrutural do esquema de dados e maior a correspondência linguística 

entre a pergunta e o schema, maior é a acurácia dos modelos. Como sintetizado no 

mapa de calor da Figura 8, o Qwen destaca-se como o melhor desempenho global 
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nas duas baterias de experimentos, seguido pelo DeepSeek. Essa hierarquia sugere 

vantagem de arquiteturas recentes treinadas com foco em instruções multilíngues e 

tarefas próximas à geração de código, o que favorece a tradução semântica entre 

linguagem natural e SQL. O Gemma 3B apresentou resultados consistentes, porém 

abaixo dos líderes, enquanto o Gaia manteve competitividade notável em cenários 

com perguntas em português. O OpenChat foi sistematicamente inferior nas quatro 

combinações de idiomas, sobretudo em configurações que demandam operações 

relacionais mais complexas. Entre os dois experimentos observou-se ganho 

generalizado de acurácia na maioria das células do mapa, com aumentos absolutos 

que chegam a aproximadamente 29 pontos percentuais no caso do DeepSeek em PT-

PT, embora haja exceções pontuais, como a queda do Qwen em EN-EN. Em termos 

de pareamento linguístico, a combinação PT-PT produziu os maiores índices médios 

de acerto, o que indica que a uniformidade de idioma reduz ambiguidades de 

mapeamento entre termos da pergunta e atributos do banco. O Qwen manteve 

desempenho relativamente mais equilibrado nas configurações bilíngues, sinalizando 

melhor capacidade de generalização entre contextos linguísticos distintos. 

 Os resultados reforçam que a natureza do esquema exerce influência direta 

sobre a geração de SQL. Estruturas não normalizadas, como a tabela única, reduzem 

o espaço de busca e o número de dependências relacionais, concentrando o esforço 

do modelo no alinhamento semântico entre rótulos de atributos e termos da pergunta. 

Em contraste, o modelo estrela requer a compreensão de hierarquias e 

relacionamentos que ainda não são plenamente capturados pelos modelos avaliados 

em regime zero-shot, mesmo quando treinados extensivamente com dados de código 

e instruções complexas. As diferenças entre combinações de idioma, refletidas no 

gradiente de cores da Figura 8, mostram que a coerência lexical entre corpus de 

treinamento implícito e vocabulário da tarefa permanece um determinante central de 

desempenho, e que modelos com treinamento intensivo em tradução e raciocínio 

multilingue tendem a sofrer menos degradação ao alternar entre perguntas e schemas 

em idiomas distintos. 
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Figura 8 - Resultados consolidados por modelo 

 

Fonte: Elaborado pelo autor (2025) 

 

Os resultados desta pesquisa, obtidos a partir de uma base desenvolvida de 

despesas públicas estruturada em dois arranjos complementares de dados, um em 

modelo estrela e outro em tabela única, avaliados em variações bilíngues de schema 

e de enunciado, demonstram de forma clara o impacto simultâneo da complexidade 

estrutural e da correspondência linguística sobre a geração de SQL em regime zero-

shot. Com dois prompts criados para reduzir ambiguidade e explicitar a tarefa sem 

induzir soluções, e mantendo condições controladas de inferência, observou-se 

desempenho consolidado entre 24,44% e 71,74% de acurácia, com supremacia do 

Qwen nas quatro combinações de idiomas e pico em PT–PT, avanços expressivos do 

DeepSeek entre os experimentos, consistência do Gemma e competitividade do Gaia 

em português, enquanto o OpenChat permaneceu inferior nas demandas relacionais. 

Esses achados confirmam que a desnormalização mitiga o espaço de busca e que o 

pareamento idiomático favorece o mapeamento semântico entre termos e atributos, 

oferecendo evidência empírica reprodutível de como escolhas de modelagem de 

dados e de formulação de prompts modulam o desempenho de LLMs em Text-To-

SQL. A construção da base bilíngue, a orquestração dos experimentos, a análise 

comparativa entre arquiteturas e a sistematização dos ganhos entre condições 

constituem uma contribuição original e aplicada, suficiente para sustentar os objetivos 

propostos. 
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CONCLUSÃO 

 

 A dissertação investigou, em cenário zero-shot, a capacidade de modelos de 

linguagem de grande escala em traduzir perguntas em linguagem natural para 

consultas SQL executáveis sobre dados públicos. Para isso, foi concebido um 

ambiente de avaliação reprodutível composto por uma base bilíngue representativa 

do domínio orçamentário de Santa Catarina, implementada em oito variantes que 

combinam tabela única e esquema estrela, em português e em inglês, e por um 

conjunto de cinquenta perguntas com respectivos SQL de referência, traduzidos para 

ambos os idiomas. O protocolo experimental manteve constante um molde de prompt 

prescritivo e adotou uma métrica única de acurácia composta, segundo a qual uma 

saída é correta somente quando a execução retorna o mesmo resultado do gabarito. 

 Os resultados indicaram que decisões de modelagem e de idioma afetam de 

maneira substantiva o desempenho. A representação em tabela única apresentou, em 

média, acurácia superior à do esquema estrela, sugerindo que a redução do custo de 

junções e a exposição direta de rótulos favorecem a tradução semântica em regime 

zero-shot. Observou-se ainda um efeito positivo, embora não absoluto, do 

alinhamento entre o idioma do enunciado e o do esquema, com ganhos mais visíveis 

em consultas que envolvem agregações e filtros temporais. Entre os modelos 

avaliados, o Qwen obteve o melhor desempenho global nas combinações testadas, 

alcançando os maiores valores de acurácia e superando as demais alternativas de 

porte semelhante. Esses achados reforçam a hipótese de que, na ausência de 

adaptação supervisionada, a escolha de um desenho de dados mais simples e de um 

alinhamento linguístico cuidadoso pode ser tão decisiva quanto a arquitetura do 

modelo. 

Do ponto de vista metodológico, a principal contribuição reside na disponibilização 

de um recurso experimental bilíngue, com esquemas paralelos e gabaritos validados 

por execução, e em um protocolo de avaliação compatível com execução local e com 

restrições realistas de infraestrutura. Em contraste com benchmarks generalistas 

voltados ao inglês, o material produzido reflete as especificidades da administração 

pública brasileira e permite mensurar, com controle de variáveis, os efeitos de idioma 

e de modelagem na tarefa de Text-To-SQL em português. O estudo também oferece 

evidências úteis para órgãos públicos e equipes técnicas: quando o objetivo é facilitar 

o acesso automatizado por interfaces em linguagem natural, publicar visões não 
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normalizadas ou tabelas consolidadas, acompanhadas de catálogos bilíngues 

consistentes, tende a reduzir erros de ligação de esquema e a aumentar a taxa de 

respostas corretas. 

Algumas limitações devem ser reconhecidas. A avaliação concentrou-se em um 

único domínio setorial e em um recorte temporal específico, com um conjunto de 

cinquenta perguntas desenhado para cobrir operações recorrentes no contexto 

orçamentário. Os experimentos consideraram apenas modelos abertos de porte 

reduzido, executados sem ajuste fino, e utilizaram SQLite como dialeto de referência, 

o que pode afetar a generalização para outros sistemas gerenciadores.  

 Essas restrições abrem frentes claras de continuidade. Trabalhos futuros 

podem ampliar o conjunto de perguntas e de domínios, estender a avaliação para 

outros estados e órgãos, e explorar variantes de prompting com exemplos mínimos, 

recuperação de metadados e gramáticas de saída que restrinjam a geração ao espaço 

de SQL válido. Estratégias semi-supervisionadas e de pseudo-rotulagem por 

execução, combinadas a dados públicos adicionais, constituem caminhos 

promissores para adaptar modelos ao contexto brasileiro com baixo custo de 

anotação. A comparação controlada entre diferentes dialetos e a incorporação de 

amostras de linhas no contexto podem esclarecer o papel de pistas distribuídas do 

próprio dado na qualidade da tradução. 

Em síntese, a dissertação demonstra que é viável avaliar, com rigor e 

reprodutibilidade, o Text-To-SQL em português sobre dados públicos reais, 

fornecendo artefatos e evidências que auxiliam tanto a pesquisa acadêmica quanto a 

prática institucional. Ao mostrar que escolhas de modelagem e de idioma impactam 

de forma mensurável a acurácia em zero-shot e ao identificar modelos mais 

adequados ao cenário regional, o estudo contribui para reduzir barreiras de acesso e 

para orientar iniciativas que buscam tornar dados governamentais mais utilizáveis por 

meio de interfaces em linguagem natural. 
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APENDICE A – CÓDIGO FONTE DA TRADUÇÃO DAS QUESTÕES 

 

from datasets import load_dataset 

import asyncio 

import pandas as pd 

from concurrent.futures import ThreadPoolExecutor 

from deep_translator import GoogleTranslator 

from concurrent.futures import ThreadPoolExecutor 

import time 

from tqdm import tqdm 

 

ds = load_dataset("VictorDCh/spider-clean-Text-To-SQL-3") 

 

# Converte cada parte para DataFrame do pandas 

train_df = pd.DataFrame(ds['train']) 

print(len(train_df)) 

dev_df = pd.DataFrame(ds['dev']) 

print(len(dev_df)) 

test_df = pd.DataFrame(ds['test']) 

print(len(test_df)) 

 

#train_df.to_csv(path_or_buf='/home/jonas/bode/data/questions_spider/train_df.csv') 

#dev_df.to_csv(path_or_buf='/home/jonas/bode/data/questions_spider/dev_df.csv') 

test_df.to_csv(path_or_buf='/home/jonas/bode/data/questions_spider/test_df.csv') 

 

def traduzir_batch(textos, idioma_destino): 

    """ 

    Traduz um lote de textos para o idioma de destino. 

    """ 

    try: 

        return [GoogleTranslator(target=idioma_destino).translate(texto) for texto in textos] 

    except Exception as e: 

        print(f"Erro ao traduzir lote: {e}") 

        return [None] * len(textos) 

 

def traduzir_coluna_em_lotes(df, coluna_origem, coluna_destino, idioma_destino, tamanho_lote=100, 

num_threads=10): 

    """ 

    Traduz uma coluna inteira de um DataFrame em lotes e usando paralelismo. 

    """ 
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    textos = df[coluna_origem].tolist() 

    resultados = [] 

    

    # Divide os textos em lotes 

    lotes = [textos[i:i + tamanho_lote] for i in range(0, len(textos), tamanho_lote)] 

    

    # Inicializa a barra de progresso 

    total_lotes = len(lotes) 

    start_time = time.time() 

 

    with ThreadPoolExecutor(max_workers=num_threads) as executor: 

        futures = [executor.submit(traduzir_batch, lote, idioma_destino) for lote in lotes] 

        for i, future in enumerate(futures): 

            try: 

                resultados.extend(future.result()) 

            except Exception as e: 

                print(f"Erro ao processar futuro: {e}") 

                resultados.extend([None] * tamanho_lote) 

            

            # Atualiza a barra de progresso 

            elapsed_time = time.time() - start_time 

            remaining_time = (elapsed_time / (i + 1)) * (total_lotes - (i + 1)) 

            tqdm.write(f"Processando lote {i + 1}/{total_lotes}. Tempo restante estimado: 

{remaining_time:.2f} segundos.") 

 

    # Adiciona os resultados ao DataFrame 

    df[coluna_destino] = resultados 

    return df 

 

 

print("Iniciando tradução...") 

 

# Traduzir a coluna para o português 

#train_df_traduzido = traduzir_coluna_em_lotes(train_df, "question", "questão_traduzida", "pt") 

#dev_df_traduzido = traduzir_coluna_em_lotes(dev_df, "question", "questão_traduzida", "pt") 

test_df_traduzido = traduzir_coluna_em_lotes(test_df, "question", "questão_traduzida", "pt") 

 

print("Tradução concluída.") 

 

#train_df_traduzido.to_csv(path_or_buf='/home/jonas/bode/data/questions_spider/train_df_traduzido.c
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sv') 

#dev_df_traduzido.to_csv(path_or_buf='/home/jonas/bode/data/questions_spider/dev_df_traduzido.cs

v') 

test_df_traduzido.to_csv(path_or_buf='/home/jonas/bode/data/questions_spider/test_df_trad

uzido.csv') 
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APENDICE B – DDL TABELA ÚNICA EM PORTUGUÊS 

 

CREATE TABLE fato_despesas ( 

    ano TEXT, 

    nro_mes TEXT, 

    mes TEXT, 

    nro_bimestre TEXT, 

    bimestre TEXT, 

    nro_trimestre TEXT, 

    trimestre TEXT, 

    nro_quadrimestre TEXT, 

    quadrimestre TEXT, 

    nro_semestre TEXT, 

    semestre TEXT, 

    cod_poder TEXT, 

    poder TEXT, 

    cod_orgao TEXT, 

    orgao TEXT, 

    cod_ug TEXT, 

    unidade_gestora TEXT, 

    cod_gestao TEXT, 

    gestao TEXT, 

    cod_tipo_entidade TEXT, 

    tipo_entidade TEXT, 

    cod_funcao TEXT, 

    funcao TEXT, 

    cod_subfuncao TEXT, 

    subfuncao TEXT, 

    cod_programa TEXT, 

    programa TEXT, 

    cod_acao TEXT, 

    acao TEXT, 

    cod_subacao TEXT, 

    subacao TEXT, 

    cod_uso TEXT, 

    uso TEXT, 

    cod_fonte TEXT, 

    fonte TEXT, 

    cod_grupo TEXT, 

    grupo TEXT, 
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    cod_especificacao TEXT, 

    especificacao TEXT, 

    cod_tipo TEXT, 

    tipo TEXT, 

    cod_categoria TEXT, 

    categoria TEXT, 

    cod_grupo_despesa TEXT, 

    grupo_despesa TEXT, 

    cod_modalidade TEXT, 

    modalidade TEXT, 

    cod_elemento TEXT, 

    elemento TEXT, 

    cod_subelemento TEXT, 

    subelemento TEXT, 

    cod_credor TEXT, 

    credor TEXT, 

    indicador_emergencial TEXT, 

    descricao_emergencial TEXT, 

    vl_dotacao_inicial REAL, 

    vl_dotacao_atualizada REAL, 

    vl_empenhado REAL, 

    vl_liquidado REAL, 

    vl_pago_orcamentario REAL 

) 
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APENDICE C – DDL TABELA ÚNICA EM INGLÊS 

 

CREATE TABLE expense_fact ( 

    year TEXT, 

    month_number TEXT, 

    month TEXT, 

    bimester_number TEXT, 

    bimester TEXT, 

    trimester_number TEXT, 

    trimester TEXT, 

    quadrimester_number TEXT, 

    quadrimester TEXT, 

    semester_number TEXT, 

    semester TEXT, 

    power_code TEXT, 

    power_name TEXT, 

    agency_code TEXT, 

    agency_name TEXT, 

    unit_code TEXT, 

    management_unit TEXT, 

    management_code TEXT, 

    management_name TEXT, 

    entity_type_code TEXT, 

    entity_type TEXT, 

    function_code TEXT, 

    function_name TEXT, 

    subfunction_code TEXT, 

    subfunction_name TEXT, 

    program_code TEXT, 

    program_name TEXT, 

    action_code TEXT, 

    action_name TEXT, 

    subaction_code TEXT, 

    subaction_name TEXT, 

    usage_code TEXT, 

    usage_name TEXT, 

    source_code TEXT, 

    source_name TEXT, 

    group_code TEXT, 

    group_name TEXT, 
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    specification_code TEXT, 

    specification_name TEXT, 

    type_code TEXT, 

    type_name TEXT, 

    category_code TEXT, 

    category_name TEXT, 

    expense_group_code TEXT, 

    expense_group_name TEXT, 

    modality_code TEXT, 

    modality_name TEXT, 

    element_code TEXT, 

    element_name TEXT, 

    subelement_code TEXT, 

    subelement_name TEXT, 

    creditor_code TEXT, 

    creditor_name TEXT, 

    emergency_indicator TEXT, 

    emergency_description TEXT, 

    initial_budget_value REAL, 

    updated_budget_value REAL, 

    committed_value REAL, 

    settled_value REAL, 

    paid_budget_value REAL 

) 
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APENDICE D – DDL STAR SCHEMA EM PORTUGUÊS 

 

-- acao definição 

CREATE TABLE acao ( 

    cod_acao TEXT PRIMARY KEY, 

    nome_acao TEXT 

); 

 

-- categoria_economica definição 

CREATE TABLE categoria_economica ( 

    cod_categoria TEXT PRIMARY KEY, 

    nome_categoria TEXT 

); 

 

-- elemento definição 

CREATE TABLE elemento ( 

    cod_elemento TEXT PRIMARY KEY, 

    nome_elemento TEXT 

); 

 

-- especificacao_fonte definição 

CREATE TABLE especificacao_fonte ( 

    cod_especificacao TEXT PRIMARY KEY, 

    nome_especificacao TEXT 

); 

 

-- fonte_recurso definição 

CREATE TABLE fonte_recurso ( 

    cod_fonte TEXT PRIMARY KEY, 

    nome_fonte TEXT 

); 

 

-- funcao definição 

CREATE TABLE funcao ( 

    cod_funcao TEXT PRIMARY KEY, 

    nome_funcao TEXT 

); 

 

-- gestao definição 

CREATE TABLE gestao ( 
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    cod_gestao TEXT PRIMARY KEY, 

    nome_gestao TEXT 

); 

 

-- grupo_despesa definição 

CREATE TABLE grupo_despesa ( 

    cod_grupo TEXT PRIMARY KEY, 

    nome_grupo TEXT 

); 

 

-- grupo_fonte definição 

CREATE TABLE grupo_fonte ( 

    cod_grupo TEXT PRIMARY KEY, 

    nome_grupo TEXT 

); 

 

-- modalidade_aplicacao definição 

CREATE TABLE modalidade_aplicacao ( 

    cod_modalidade TEXT PRIMARY KEY, 

    nome_modalidade TEXT 

); 

 

-- orgao definição 

CREATE TABLE orgao ( 

    cod_orgao TEXT PRIMARY KEY, 

    nome_orgao TEXT 

); 

 

-- poder definição 

CREATE TABLE poder ( 

    cod_poder TEXT PRIMARY KEY, 

    nome_poder TEXT 

); 

 

-- programa definição 

CREATE TABLE programa ( 

    cod_programa TEXT PRIMARY KEY, 

    nome_programa TEXT 

); 
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-- subacao definição 

CREATE TABLE subacao ( 

    cod_subacao TEXT PRIMARY KEY, 

    nome_subacao TEXT 

); 

 

-- subelemento definição 

CREATE TABLE subelemento ( 

    cod_subelemento TEXT PRIMARY KEY, 

    nome_subelemento TEXT 

); 

 

-- subfuncao definição 

CREATE TABLE subfuncao ( 

    cod_subfuncao TEXT PRIMARY KEY, 

    nome_subfuncao TEXT 

); 

 

-- tempo definição 

CREATE TABLE tempo ( 

    id INTEGER PRIMARY KEY, 

    ano INTEGER, 

    nro_mes INTEGER, 

    mes TEXT, 

    nro_bimestre INTEGER, 

    bimestre TEXT, 

    nro_trimestre INTEGER, 

    trimestre TEXT, 

    nro_quadrimestre INTEGER, 

    quadrimestre TEXT, 

    nro_semestre INTEGER, 

    semestre TEXT 

); 

 

-- tipo_entidade definição 

CREATE TABLE tipo_entidade ( 

    cod_tipo_entidade TEXT PRIMARY KEY, 

    nome_tipo_entidade TEXT 

); 
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-- tipo_fonte definição 

CREATE TABLE tipo_fonte ( 

    cod_tipo TEXT PRIMARY KEY, 

    nome_tipo TEXT 

); 

 

-- unidade_gestora definição 

CREATE TABLE unidade_gestora ( 

    cod_ug TEXT PRIMARY KEY, 

    nome_ug TEXT 

); 

 

-- uso definição 

CREATE TABLE uso ( 

    cod_uso TEXT PRIMARY KEY, 

    nome_uso TEXT 

); 

 

-- fato_despesa definição 

CREATE TABLE fato_despesa ( 

 id INTEGER PRIMARY KEY AUTOINCREMENT, 

 tempo_id INTEGER, 

 cod_poder TEXT, 

 cod_orgao TEXT, 

 cod_ug TEXT, 

 cod_gestao TEXT, 

 cod_tipo_entidade TEXT, 

 cod_funcao TEXT, 

 cod_subfuncao TEXT, 

 cod_programa TEXT, 

 cod_acao TEXT, 

 cod_subacao TEXT, 

 cod_uso TEXT, 

 cod_fonte TEXT, 

 cod_grupo TEXT, 

 cod_especificacao TEXT, 

 cod_tipo TEXT, 

 cod_categoria TEXT, 

 cod_grupo_despesa TEXT, 

 cod_modalidade TEXT, 
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 cod_elemento TEXT, 

 cod_subelemento TEXT, 

 cod_credor TEXT, 

 indicador_emergencial TEXT, 

 vl_dotacao_inicial REAL, 

 vl_dotacao_atualizada REAL, 

 vl_empenhado REAL, 

 vl_liquidado REAL, 

 vl_pago_orcamentario REAL, 

 descricao_despesa_emergencial TEXT, 

 CONSTRAINT FK_fato_despesa_acao FOREIGN KEY (cod_acao) REFERENCES 

acao(cod_acao), 

 CONSTRAINT FK_fato_despesa_categoria_economica_2 FOREIGN KEY 

(cod_categoria) REFERENCES categoria_economica(cod_categoria), 

 CONSTRAINT FK_fato_despesa_elemento_5 FOREIGN KEY (cod_elemento) 

REFERENCES elemento(cod_elemento), 

 CONSTRAINT FK_fato_despesa_especificacao_fonte_6 FOREIGN KEY 

(cod_especificacao) REFERENCES especificacao_fonte(cod_especificacao), 

 CONSTRAINT FK_fato_despesa_fonte_recurso_7 FOREIGN KEY (cod_fonte) 

REFERENCES fonte_recurso(cod_fonte), 

 CONSTRAINT FK_fato_despesa_funcao_8 FOREIGN KEY (cod_funcao) 

REFERENCES funcao(cod_funcao), 

 CONSTRAINT FK_fato_despesa_gestao_9 FOREIGN KEY (cod_gestao) 

REFERENCES gestao(cod_gestao), 

 CONSTRAINT FK_fato_despesa_grupo_despesa_10 FOREIGN KEY 

(cod_grupo_despesa) REFERENCES grupo_despesa(cod_grupo), 

 CONSTRAINT FK_fato_despesa_grupo_fonte_11 FOREIGN KEY (cod_grupo) 

REFERENCES grupo_fonte(cod_grupo), 

 CONSTRAINT FK_fato_despesa_modalidade_aplicacao_12 FOREIGN KEY 

(cod_modalidade) REFERENCES modalidade_aplicacao(cod_modalidade), 

 CONSTRAINT FK_fato_despesa_orgao_13 FOREIGN KEY (cod_orgao) 

REFERENCES orgao(cod_orgao), 

 CONSTRAINT FK_fato_despesa_programa_15 FOREIGN KEY (cod_programa) 

REFERENCES programa(cod_programa), 

 CONSTRAINT FK_fato_despesa_subacao_16 FOREIGN KEY (cod_subacao) 

REFERENCES subacao(cod_subacao), 

 CONSTRAINT FK_fato_despesa_subelemento_17 FOREIGN KEY 

(cod_subelemento) REFERENCES subelemento(cod_subelemento), 

 CONSTRAINT FK_fato_despesa_subfuncao_18 FOREIGN KEY (cod_subfuncao) 

REFERENCES subfuncao(cod_subfuncao), 
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 CONSTRAINT FK_fato_despesa_tempo_19 FOREIGN KEY (tempo_id) 

REFERENCES tempo(id), 

 CONSTRAINT FK_fato_despesa_tipo_entidade_20 FOREIGN KEY 

(cod_tipo_entidade) REFERENCES tipo_entidade(cod_tipo_entidade), 

 CONSTRAINT FK_fato_despesa_tipo_fonte_21 FOREIGN KEY (cod_tipo) 

REFERENCES tipo_fonte(cod_tipo), 

 CONSTRAINT FK_fato_despesa_unidade_gestora_22 FOREIGN KEY (cod_ug) 

REFERENCES unidade_gestora(cod_ug), 

 CONSTRAINT FK_fato_despesa_uso_23 FOREIGN KEY (cod_uso) REFERENCES 

uso(cod_uso) 

); 
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APENDICE E – DDL STAR SCHEMA EM INGLÊS 

 

-- action definition 

CREATE TABLE action ( 

    action_code TEXT PRIMARY KEY, 

    action_name TEXT 

); 

 

-- economic_category definition 

CREATE TABLE economic_category ( 

    category_code TEXT PRIMARY KEY, 

    category_name TEXT 

); 

 

-- element definition 

CREATE TABLE element ( 

    element_code TEXT PRIMARY KEY, 

    element_name TEXT 

); 

 

-- funding_specification definition 

CREATE TABLE funding_specification ( 

    specification_code TEXT PRIMARY KEY, 

    specification_name TEXT 

); 

 

-- funding_source definition 

CREATE TABLE funding_source ( 

    source_code TEXT PRIMARY KEY, 

    source_name TEXT 

); 

 

-- function definition 

CREATE TABLE function ( 

    function_code TEXT PRIMARY KEY, 

    function_name TEXT 

); 

 

-- management definition 

CREATE TABLE management ( 
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    management_code TEXT PRIMARY KEY, 

    management_name TEXT 

); 

 

-- expense_group definition 

CREATE TABLE expense_group ( 

    group_code TEXT PRIMARY KEY, 

    group_name TEXT 

); 

 

-- source_group definition 

CREATE TABLE source_group ( 

    group_code TEXT PRIMARY KEY, 

    group_name TEXT 

); 

 

-- application_modality definition 

CREATE TABLE application_modality ( 

    modality_code TEXT PRIMARY KEY, 

    modality_name TEXT 

); 

 

-- agency definition 

CREATE TABLE agency ( 

    agency_code TEXT PRIMARY KEY, 

    agency_name TEXT 

); 

 

-- power_branch definition 

CREATE TABLE power_branch ( 

    power_code TEXT PRIMARY KEY, 

    power_name TEXT 

); 

 

-- program definition 

CREATE TABLE program ( 

    program_code TEXT PRIMARY KEY, 

    program_name TEXT 

); 
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-- subaction definition 

CREATE TABLE subaction ( 

    subaction_code TEXT PRIMARY KEY, 

    subaction_name TEXT 

); 

 

-- subelement definition 

CREATE TABLE subelement ( 

    subelement_code TEXT PRIMARY KEY, 

    subelement_name TEXT 

); 

 

-- subfunction definition 

CREATE TABLE subfunction ( 

    subfunction_code TEXT PRIMARY KEY, 

    subfunction_name TEXT 

); 

 

-- time definition 

CREATE TABLE time ( 

    id INTEGER PRIMARY KEY, 

    year INTEGER, 

    month_number INTEGER, 

    month TEXT, 

    bimester_number INTEGER, 

    bimester TEXT, 

    trimester_number INTEGER, 

    trimester TEXT, 

    quadrimester_number INTEGER, 

    quadrimester TEXT, 

    semester_number INTEGER, 

    semester TEXT 

); 

 

-- entity_type definition 

CREATE TABLE entity_type ( 

    entity_type_code TEXT PRIMARY KEY, 

    entity_type_name TEXT 

); 
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-- source_type definition 

CREATE TABLE source_type ( 

    type_code TEXT PRIMARY KEY, 

    type_name TEXT 

); 

 

-- management_unit definition 

CREATE TABLE management_unit ( 

    unit_code TEXT PRIMARY KEY, 

    unit_name TEXT 

); 

 

-- usage definition 

CREATE TABLE usage ( 

    usage_code TEXT PRIMARY KEY, 

    usage_name TEXT 

); 

 

-- expense_fact definition 

CREATE TABLE expense_fact ( 

    id INTEGER PRIMARY KEY AUTOINCREMENT, 

    time_id INTEGER, 

    power_code TEXT, 

    agency_code TEXT, 

    unit_code TEXT, 

    management_code TEXT, 

    entity_type_code TEXT, 

    function_code TEXT, 

    subfunction_code TEXT, 

    program_code TEXT, 

    action_code TEXT, 

    subaction_code TEXT, 

    usage_code TEXT, 

    source_code TEXT, 

    group_code TEXT, 

    specification_code TEXT, 

    type_code TEXT, 

    category_code TEXT, 

    expense_group_code TEXT, 

    modality_code TEXT, 
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    element_code TEXT, 

    subelement_code TEXT, 

    creditor_code TEXT, 

    emergency_indicator TEXT, 

    initial_budget_value REAL, 

    updated_budget_value REAL, 

    committed_value REAL, 

    settled_value REAL, 

    paid_budget_value REAL, 

    emergency_expense_description TEXT, 

    CONSTRAINT FK_expense_fact_action FOREIGN KEY (action_code) REFERENCES 

action(action_code), 

    CONSTRAINT FK_expense_fact_economic_category FOREIGN KEY (category_code) 

REFERENCES economic_category(category_code), 

    CONSTRAINT FK_expense_fact_element FOREIGN KEY (element_code) REFERENCES 

element(element_code), 

    CONSTRAINT FK_expense_fact_funding_specification FOREIGN KEY (specification_code) 

REFERENCES funding_specification(specification_code), 

    CONSTRAINT FK_expense_fact_funding_source FOREIGN KEY (source_code) REFERENCES 

funding_source(source_code), 

    CONSTRAINT FK_expense_fact_function FOREIGN KEY (function_code) REFERENCES 

function(function_code), 

    CONSTRAINT FK_expense_fact_management FOREIGN KEY (management_code) 

REFERENCES management(management_code), 

    CONSTRAINT FK_expense_fact_expense_group FOREIGN KEY (expense_group_code) 

REFERENCES expense_group(group_code), 

    CONSTRAINT FK_expense_fact_source_group FOREIGN KEY (group_code) REFERENCES 

source_group(group_code), 

    CONSTRAINT FK_expense_fact_application_modality FOREIGN KEY (modality_code) 

REFERENCES application_modality(modality_code), 

    CONSTRAINT FK_expense_fact_agency FOREIGN KEY (agency_code) REFERENCES 

agency(agency_code), 

    CONSTRAINT FK_expense_fact_program FOREIGN KEY (program_code) REFERENCES 

program(program_code), 

    CONSTRAINT FK_expense_fact_subaction FOREIGN KEY (subaction_code) REFERENCES 

subaction(subaction_code), 

    CONSTRAINT FK_expense_fact_subelement FOREIGN KEY (subelement_code) REFERENCES 

subelement(subelement_code), 

    CONSTRAINT FK_expense_fact_subfunction FOREIGN KEY (subfunction_code) REFERENCES 

subfunction(subfunction_code), 



106 

 

    CONSTRAINT FK_expense_fact_time FOREIGN KEY (time_id) REFERENCES time(id), 

    CONSTRAINT FK_expense_fact_entity_type FOREIGN KEY (entity_type_code) REFERENCES 

entity_type(entity_type_code), 

    CONSTRAINT FK_expense_fact_source_type FOREIGN KEY (type_code) REFERENCES 

source_type(type_code), 

    CONSTRAINT FK_expense_fact_management_unit FOREIGN KEY (unit_code) REFERENCES 

management_unit(unit_code), 

    CONSTRAINT FK_expense_fact_usage FOREIGN KEY (usage_code) REFERENCES 

usage(usage_code) 

); 
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APENDICE F – PROMPT TABELA ÚNICA EM PORTUGUÊS 

 

Você é um gerador de SQL para SQLite.  

Não tente calcular valores, apenas gerar um comando SQL 

Dada a pergunta e o esquema do banco de dados abaixo, gere **apenas UM comando SQL 

válido**, sem explicações ou texto extra. 

O comando deve terminar com ponto e vírgula `;`. 

Não escreva nada além do SQL. 

Esquema do banco de dados:  

CREATE TABLE expense_fact ( year TEXT, month_number TEXT, month TEXT, 

bimester_number TEXT, bimester TEXT, trimester_number TEXT, trimester TEXT, 

quadrimester_number TEXT, quadrimester TEXT, semester_number TEXT, semester TEXT, 

power_code TEXT, power_name TEXT, agency_code TEXT, agency_name TEXT, unit_code TEXT, 

management_unit TEXT, management_code TEXT, management_name TEXT, entity_type_code 

TEXT, entity_type TEXT, function_code TEXT, function_name TEXT, subfunction_code TEXT, 

subfunction_name TEXT, program_code TEXT, program_name TEXT, action_code TEXT, 

action_name TEXT, subaction_code TEXT, subaction_name TEXT, usage_code TEXT, usage_name 

TEXT, source_code TEXT, source_name TEXT, group_code TEXT, group_name TEXT, 

specification_code TEXT, specification_name TEXT, type_code TEXT, type_name TEXT, 

category_code TEXT, category_name TEXT, expense_group_code TEXT, expense_group_name 

TEXT, modality_code TEXT, modality_name TEXT, element_code TEXT, element_name TEXT, 

subelement_code TEXT, subelement_name TEXT, creditor_code TEXT, creditor_name TEXT, 

emergency_indicator TEXT, emergency_description TEXT, initial_budget_value REAL, 

updated_budget_value REAL, committed_value REAL, settled_value REAL, paid_budget_value REAL 

);   

Escreva um comando sql valido para a pergunta com base no schema: 

Quais são os anos disponíveis nos dados?  

SQL: ###Resposta:  SELECT DISTINCT year FROM expense_fact;   
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APENDICE G – PROMPT TABELA ÚNICA EM INGLÊS 

 

You are an SQL generator for SQLite. 

Given the question and the database schema below, generate only **ONE** valid SQL 

command,with no extra explanations or text.  

The command must end with a semicolon ';'. 

Do not write anything other than the SQL. 

Database schema: CREATE TABLE expense_fact ( year TEXT, month_number TEXT, 

month TEXT, bimester_number TEXT, bimester TEXT, trimester_number TEXT, trimester TEXT, 

quadrimester_number TEXT, quadrimester TEXT, semester_number TEXT, semester TEXT, 

power_code TEXT, power_name TEXT, agency_code TEXT, agency_name TEXT, unit_code TEXT, 

management_unit TEXT, management_code TEXT, management_name TEXT, entity_type_code 

TEXT, entity_type TEXT, function_code TEXT, function_name TEXT, subfunction_code TEXT, 

subfunction_name TEXT, program_code TEXT, program_name TEXT, action_code TEXT, 

action_name TEXT, subaction_code TEXT, subaction_name TEXT, usage_code TEXT, usage_name 

TEXT, source_code TEXT, source_name TEXT, group_code TEXT, group_name TEXT, 

specification_code TEXT, specification_name TEXT, type_code TEXT, type_name TEXT, 

category_code TEXT, category_name TEXT, expense_group_code TEXT, expense_group_name 

TEXT, modality_code TEXT, modality_name TEXT, element_code TEXT, element_name TEXT, 

subelement_code TEXT, subelement_name TEXT, creditor_code TEXT, creditor_name TEXT, 

emergency_indicator TEXT, emergency_description TEXT, initial_budget_value REAL, 

updated_budget_value REAL, committed_value REAL, settled_value REAL, paid_budget_value REAL 

);   

Write an SQL command for the question: Which years are available in the data?  

SQL: ###Response:  SELECT DISTINCT year FROM expense_fact; 
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APENDICE H – PROMPT STAR SCHEMA EM PORTUGUÊS 

 

Você é um gerador de SQL para SQLite. 

Não tente calcular valores, apenas gerar um comando SQL 

Dada a pergunta e o esquema do banco de dados abaixo, gere **apenas UM comando SQL 

válido**, sem explicações ou texto extra. 

O comando deve terminar com ponto e vírgula `;`. 

Não escreva nada além do SQL. 

Esquema do banco de dados:  

CREATE TABLE action ( action_code TEXT PRIMARY KEY, action_name TEXT ); CREATE 

TABLE economic_category ( category_code TEXT PRIMARY KEY, category_name TEXT ); CREATE 

TABLE element ( element_code TEXT PRIMARY KEY, element_name TEXT ); CREATE TABLE 

funding_specification ( specification_code TEXT PRIMARY KEY, specification_name TEXT ); 

CREATE TABLE funding_source ( source_code TEXT PRIMARY KEY, source_name TEXT ); 

CREATE TABLE function ( function_code TEXT PRIMARY KEY, function_name TEXT ); CREATE 

TABLE management ( management_code TEXT PRIMARY KEY, management_name TEXT ); 

CREATE TABLE expense_group ( expense_group_code TEXT PRIMARY KEY, 

expense_group_name TEXT ); CREATE TABLE source_group ( group_code TEXT PRIMARY KEY, 

group_name TEXT ); CREATE TABLE application_modality ( modality_code TEXT PRIMARY KEY, 

modality_name TEXT ); CREATE TABLE agency ( agency_code TEXT PRIMARY KEY, 

agency_name TEXT ); CREATE TABLE power_branch ( power_code TEXT PRIMARY KEY, 

power_name TEXT ); CREATE TABLE program ( program_code TEXT PRIMARY KEY, 

program_name TEXT ); CREATE TABLE subaction ( subaction_code TEXT PRIMARY KEY, 

subaction_name TEXT ); CREATE TABLE subelement ( subelement_code TEXT PRIMARY KEY, 

subelement_name TEXT ); CREATE TABLE subfunction ( subfunction_code TEXT PRIMARY KEY, 

subfunction_name TEXT ); CREATE TABLE time ( id INTEGER PRIMARY KEY, year INTEGER, 

month_number INTEGER, month TEXT, bimester_number INTEGER, bimester TEXT, 

trimester_number INTEGER, trimester TEXT, quadrimester_number INTEGER, quadrimester TEXT, 

semester_number INTEGER, semester TEXT ); CREATE TABLE entity_type ( entity_type_code TEXT 

PRIMARY KEY, entity_type_name TEXT ); CREATE TABLE source_type ( type_code TEXT 

PRIMARY KEY, type_name TEXT ); CREATE TABLE management_unit ( unit_code TEXT PRIMARY 

KEY, unit_name TEXT ); CREATE TABLE usage ( usage_code TEXT PRIMARY KEY, usage_name 

TEXT ); CREATE TABLE expense_fact ( id INTEGER PRIMARY KEY AUTOINCREMENT, time_id 

INTEGER, power_code TEXT, agency_code TEXT, unit_code TEXT, management_code TEXT, 

entity_type_code TEXT, function_code TEXT, subfunction_code TEXT, program_code TEXT, 

action_code TEXT, subaction_code TEXT, usage_code TEXT, source_code TEXT, group_code 

TEXT, specification_code TEXT, type_code TEXT, category_code TEXT, expense_group_code 

TEXT, modality_code TEXT, element_code TEXT, subelement_code TEXT, creditor_code TEXT, 

emergency_indicator TEXT, initial_budget_value REAL, updated_budget_value REAL, 

committed_value REAL, settled_value REAL, paid_budget_value REAL, 
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emergency_expense_description TEXT, CONSTRAINT FK_expense_fact_action FOREIGN KEY 

(action_code) REFERENCES action(action_code), CONSTRAINT 

FK_expense_fact_economic_category FOREIGN KEY (category_code) REFERENCES 

economic_category(category_code), CONSTRAINT FK_expense_fact_element FOREIGN KEY 

(element_code) REFERENCES element(element_code), CONSTRAINT 

FK_expense_fact_funding_specification FOREIGN KEY (specification_code) REFERENCES 

funding_specification(specification_code), CONSTRAINT FK_expense_fact_funding_source 

FOREIGN KEY (source_code) REFERENCES funding_source(source_code), CONSTRAINT 

FK_expense_fact_function FOREIGN KEY (function_code) REFERENCES function(function_code), 

CONSTRAINT FK_expense_fact_management FOREIGN KEY (management_code) REFERENCES 

management(management_code), CONSTRAINT FK_expense_fact_expense_group FOREIGN KEY 

(expense_group_code) REFERENCES expense_group(expense_group_code), CONSTRAINT 

FK_expense_fact_source_group FOREIGN KEY (group_code) REFERENCES 

source_group(group_code), CONSTRAINT FK_expense_fact_application_modality FOREIGN KEY 

(modality_code) REFERENCES application_modality(modality_code), CONSTRAINT 

FK_expense_fact_agency FOREIGN KEY (agency_code) REFERENCES agency(agency_code), 

CONSTRAINT FK_expense_fact_program FOREIGN KEY (program_code) REFERENCES 

program(program_code), CONSTRAINT FK_expense_fact_subaction FOREIGN KEY 

(subaction_code) REFERENCES subaction(subaction_code), CONSTRAINT 

FK_expense_fact_subelement FOREIGN KEY (subelement_code) REFERENCES 

subelement(subelement_code), CONSTRAINT FK_expense_fact_subfunction FOREIGN KEY 

(subfunction_code) REFERENCES subfunction(subfunction_code), CONSTRAINT 

FK_expense_fact_time FOREIGN KEY (time_id) REFERENCES time(id), CONSTRAINT 

FK_expense_fact_entity_type FOREIGN KEY (entity_type_code) REFERENCES 

entity_type(entity_type_code), CONSTRAINT FK_expense_fact_source_type FOREIGN KEY 

(type_code) REFERENCES source_type(type_code), CONSTRAINT 

FK_expense_fact_management_unit FOREIGN KEY (unit_code) REFERENCES 

management_unit(unit_code), CONSTRAINT FK_expense_fact_usage FOREIGN KEY (usage_code) 

REFERENCES usage(usage_code) ); CREATE TABLE sqlite_sequence(name,seq);   

Escreva um comando sql valido para a pergunta com base no schema:  

Quais são os anos disponíveis nos dados?  

SQL: ###Resposta:  SELECT DISTINCT year FROM time;  
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APENDICE I – PROMPT STAR SCHEMA EM INGLÊS 

 

You are an SQL generator for SQLite. 

Given the question and the database schema below, generate only **ONE** valid SQL 

command,with no extra explanations or text.  

The command must end with a semicolon ';'.  

Do not write anything other than the SQL.Database  

schema: CREATE TABLE action ( action_code TEXT PRIMARY KEY, action_name TEXT ); 

CREATE TABLE economic_category ( category_code TEXT PRIMARY KEY, category_name TEXT ); 

CREATE TABLE element ( element_code TEXT PRIMARY KEY, element_name TEXT ); CREATE 

TABLE funding_specification ( specification_code TEXT PRIMARY KEY, specification_name TEXT ); 

CREATE TABLE funding_source ( source_code TEXT PRIMARY KEY, source_name TEXT ); 

CREATE TABLE function ( function_code TEXT PRIMARY KEY, function_name TEXT ); CREATE 

TABLE management ( management_code TEXT PRIMARY KEY, management_name TEXT ); 

CREATE TABLE expense_group ( expense_group_code TEXT PRIMARY KEY, 

expense_group_name TEXT ); CREATE TABLE source_group ( group_code TEXT PRIMARY KEY, 

group_name TEXT ); CREATE TABLE application_modality ( modality_code TEXT PRIMARY KEY, 

modality_name TEXT ); CREATE TABLE agency ( agency_code TEXT PRIMARY KEY, 

agency_name TEXT ); CREATE TABLE power_branch ( power_code TEXT PRIMARY KEY, 

power_name TEXT ); CREATE TABLE program ( program_code TEXT PRIMARY KEY, 

program_name TEXT ); CREATE TABLE subaction ( subaction_code TEXT PRIMARY KEY, 

subaction_name TEXT ); CREATE TABLE subelement ( subelement_code TEXT PRIMARY KEY, 

subelement_name TEXT ); CREATE TABLE subfunction ( subfunction_code TEXT PRIMARY KEY, 

subfunction_name TEXT ); CREATE TABLE time ( id INTEGER PRIMARY KEY, year INTEGER, 

month_number INTEGER, month TEXT, bimester_number INTEGER, bimester TEXT, 

trimester_number INTEGER, trimester TEXT, quadrimester_number INTEGER, quadrimester TEXT, 

semester_number INTEGER, semester TEXT ); CREATE TABLE entity_type ( entity_type_code TEXT 

PRIMARY KEY, entity_type_name TEXT ); CREATE TABLE source_type ( type_code TEXT 

PRIMARY KEY, type_name TEXT ); CREATE TABLE management_unit ( unit_code TEXT PRIMARY 

KEY, unit_name TEXT ); CREATE TABLE usage ( usage_code TEXT PRIMARY KEY, usage_name 

TEXT ); CREATE TABLE expense_fact ( id INTEGER PRIMARY KEY AUTOINCREMENT, time_id 

INTEGER, power_code TEXT, agency_code TEXT, unit_code TEXT, management_code TEXT, 

entity_type_code TEXT, function_code TEXT, subfunction_code TEXT, program_code TEXT, 

action_code TEXT, subaction_code TEXT, usage_code TEXT, source_code TEXT, group_code 

TEXT, specification_code TEXT, type_code TEXT, category_code TEXT, expense_group_code 

TEXT, modality_code TEXT, element_code TEXT, subelement_code TEXT, creditor_code TEXT, 

emergency_indicator TEXT, initial_budget_value REAL, updated_budget_value REAL, 

committed_value REAL, settled_value REAL, paid_budget_value REAL, 

emergency_expense_description TEXT, CONSTRAINT FK_expense_fact_action FOREIGN KEY 

(action_code) REFERENCES action(action_code), CONSTRAINT 
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FK_expense_fact_economic_category FOREIGN KEY (category_code) REFERENCES 

economic_category(category_code), CONSTRAINT FK_expense_fact_element FOREIGN KEY 

(element_code) REFERENCES element(element_code), CONSTRAINT 

FK_expense_fact_funding_specification FOREIGN KEY (specification_code) REFERENCES 

funding_specification(specification_code), CONSTRAINT FK_expense_fact_funding_source 

FOREIGN KEY (source_code) REFERENCES funding_source(source_code), CONSTRAINT 

FK_expense_fact_function FOREIGN KEY (function_code) REFERENCES function(function_code), 

CONSTRAINT FK_expense_fact_management FOREIGN KEY (management_code) REFERENCES 

management(management_code), CONSTRAINT FK_expense_fact_expense_group FOREIGN KEY 

(expense_group_code) REFERENCES expense_group(expense_group_code), CONSTRAINT 

FK_expense_fact_source_group FOREIGN KEY (group_code) REFERENCES 

source_group(group_code), CONSTRAINT FK_expense_fact_application_modality FOREIGN KEY 

(modality_code) REFERENCES application_modality(modality_code), CONSTRAINT 

FK_expense_fact_agency FOREIGN KEY (agency_code) REFERENCES agency(agency_code), 

CONSTRAINT FK_expense_fact_program FOREIGN KEY (program_code) REFERENCES 

program(program_code), CONSTRAINT FK_expense_fact_subaction FOREIGN KEY 

(subaction_code) REFERENCES subaction(subaction_code), CONSTRAINT 

FK_expense_fact_subelement FOREIGN KEY (subelement_code) REFERENCES 

subelement(subelement_code), CONSTRAINT FK_expense_fact_subfunction FOREIGN KEY 

(subfunction_code) REFERENCES subfunction(subfunction_code), CONSTRAINT 

FK_expense_fact_time FOREIGN KEY (time_id) REFERENCES time(id), CONSTRAINT 

FK_expense_fact_entity_type FOREIGN KEY (entity_type_code) REFERENCES 

entity_type(entity_type_code), CONSTRAINT FK_expense_fact_source_type FOREIGN KEY 

(type_code) REFERENCES source_type(type_code), CONSTRAINT 

FK_expense_fact_management_unit FOREIGN KEY (unit_code) REFERENCES 

management_unit(unit_code), CONSTRAINT FK_expense_fact_usage FOREIGN KEY (usage_code) 

REFERENCES usage(usage_code) ); CREATE TABLE sqlite_sequence(name,seq); 

 Write an SQL command for the question: Which years are available in the data?  

SQL: ###Response: SELECT DISTINCT year FROM time; 
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APENDICE J – BASE DE DADOS EM STAR SCHEMA EM PORTUGUÊS 
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APENDICE K – BASE DE DADOS EM STAR SCHEMA EM INGLÊS 
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APENDICE L – BASE DE DADOS EM TABELA ÚNICA EM PORTUGUÊS 
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APENDICE M – BASE DE DADOS EM TABELA ÚNICA EM INGLÊS 
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