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ABSTRACT

Specifying software with formal methods provides the benefit of automatically verifying the
specification against desired properties, helping to prevent unwanted behaviors. TLA+ (Temporal
Logic of Actions+) is a formal specification language focused on concurrent systems, where
behaviors can be hard to predict without a model checker - a tool that checks a given property on
all possible behaviors of a specified system. Checked properties, however, can be falsified if any
mistakes are made while implementing an executable version of the specified system. This work
proposes a tool that generates automated unit and integration tests from the model used by the
model checker, making assertions over allowed and unallowed behaviors on the implementation,
and thus mitigating its deviance from verified properties. It also designs a more decentralized
environment for generated code execution and its tests, based on an oracle abstraction.

Keywords: Test Generation. Formal Specification. Temporal Logic. Model Checking. TLA+ .
Elixir.



RESUMO

Especificar software com métodos formais traz o benefício de verificar automaticamente pro-
priedades esperadas da especificação, ajudando a prevenir comportamentos indesejados. TLA+

(Temporal Logic of Actions+ - Lógica Temporal de Ações+) é uma linguagem de especificação
formal focada em sistemas concorrentes, onde comportamentos podem ser difíceis de prever
sem um model checker - uma ferramenta que verifica uma propriedade em todos os possíveis
comportamentos de um sistema especificado. Este trabalho propõe uma ferramenta que gera
testes automatizados unitários e de integração a partir do modelo usado pelo model checker,
fazendo asserções sobre comportamentos permitidos e não permitidos na implementação, e
assim mitigando possíveis violações das propriedades verificadas. O trabalho também propõe
um ambiente mais decentralizado a execução do código e testes gerados, baseando-se em uma
abstração de oráculo.

Palavras-chave: Geração de Testes. Especificação Formal. Lógica Temporal. Model Checking.
TLA+ . Elixir.
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1 INTRODUCTION

Formally specifying software is a valuable practice to increase the trustability of software,
providing mechanisms to verify properties of behaviors at the software’s design stage. The
importance of verifications becomes imperative when designing concurrent systems, where the
number of reachable states and behaviors does not fit the designer’s mind alone. Therefore,
specification methods arise with a focus on concurrent systems, such as Petri net’s (PETRI, 1962)
and pi-calculus (MILNER; PARROW; WALKER, 1992).

Following these works, Lamport proposes TLA+ in (LAMPORT, 2008) based on the
TLA (Temporal Logic of Actions) logic, which extends temporal logic terms allowing predicates
over pairs of states, called actions. TLA+ provides a declarative and mathematical syntax to
define actions that together will dictate whether a behavior - an infinite sequence of states - is
accepted or not by the specification. The state space for a specification can be explored with a
model checker, TLC (LAMPORT, 2002) or Apalache (KONNOV; KUKOVEC; TRAN, 2019),
to verify the properties’ satisfiability, defined as the state or temporal formulas.

Besides design validation, writing a formal specification can also benefit existing running
systems. For example, it can help to find bugs and inconsistencies and to enable aggressive
optimizations by changing the specification and checking whether it still satisfies the set of
properties. These benefits were reported by Amazon Web Services (NEWCOMBE et al., 2015)
after using TLA+ in 10 (ten) of its complex systems and, for each one of them, finding bugs or
understanding that led to optimizations.

Written formal specifications, however, lack any correspondence with the actual imple-
mentation besides the programmer’s understanding. Some available tools to mitigate this problem
are trace checking, code generation, and test case generation. TLA+, however, still lacks most of
this tooling, with no published materials on this matter as of the writing of this dissertation. A
previous work (MAFRA, 2019) proposes a code generator, which takes a specification written
in TLA+ and generates Elixir (Elixir Core Team, ) code, with the main goals of maintaining a
cognitive correspondence between actions and functions, prioritizing readability, and facilitating
and implantation in distributed and concurrent scenarios. With this cognitive correspondence, it
is presumable that the programmer makes changes to the generated code to make it simpler or
more performatic. By doing this, the programmer can introduce unallowed behaviors or remove
allowed ones. As for test case generation, there are two separate initiatives on model-based
testing from TLA+ models: exploring TLC state space (DORMINEY, 2020) and reproducing
witness from Apalache’s counterexamples or simulation (KUPRIANOV, 2020), with results still
to be published.

Automated testing is a well-established method in the software engineering field to
mitigate the introduction of errors in working software. In this context, writing automated tests
based on a formal specification would not only enhance confidence in making code changes but
also help validate the initially generated code itself. Moreover, while writing tests is a manual
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task subjected to human-introduced false negatives, it is possible to automate this process by
generating test scenarios directly from the specification itself.

A formal specification written in TLA+ contains different information that can be used
to generate test scenarios. All the information about states and transitions can be obtained by
interpreting the defined actions, similar to the process of generating code, which can be used to
assemble some white-box testing - tests where each internal state of the behavior is checked, not
only some final result. If any properties are defined, they can also be an input to test generation
by running the executable code and checking that the property holds when it is supposed to.
The third kind of information is not present in the specification itself but can be obtained by
running the specification through a model checker. Model checkers take a specification and a set
of temporal formulas and, for each formula, return success if it is true for all behaviors or false if
there is at least one behavior that falsifies it - informing which behavior is that, also known as a
counterexample - that can be used as a test scenario. TLA+ model checkers can also generate
model-compliant traces without properties as input by running simulation.

The set of techniques to generate tests from model information is known as model-based
testing, and methods to obtain tests from properties are called property-based testing. While
there is extensive research on these two topics, their implementation for TLA+ specifications is a
fresh subject being also approached by other researchers, with no published works at the time of
this writing. The main challenges regarding minimizing the test suite size and its execution time
while meeting a coverage criterion often face the state-explosion problem.

This work proposes a test generation tool using some information from a TLA+ specifi-
cation, to be used mainly alongside the code generation tool previously proposed, to improve
confidence in spec correspondence for both the original generated code and any manual modifi-
cations made with no intention of modifying the set of allowed behaviors.

When a bug is found by model checking, it is often not trivial how to 1. Reproduce that
bug in production software, and 2. Ensure the bug is fixed after an update to the implementation.
This is especially hard when the person writing the specification is not the same as the one imple-
menting the software. By providing pluggable interfaces in the generated code and integration
tests with the capability of reproducing traces, the tool described in this work aims to reduce the
gap between model and implementation with this problem as a focus.

This work’s evaluation is done through case studies, attempting to make it as realistic as
possible. For that purpose, some environmental changes in both code generation and the first
version of test generation were made, allowing completely decentralized models to be executed
without a central unit, relying only on a message-passing abstraction. This improvement has
significant relevance to the resulting artifact of this work and, therefore, is considered an initially
unplanned contribution.

Motivation for this work relies on improving tooling around TLA+ to incentivize its usage.
The problem being addressed is the gap between specification and production systems since
no executable artifact is derived from the model or the model checker outputs. The proposed
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solution includes improvements to the previously proposed code generator (MAFRA, 2019),
which provides executable artifacts from models; and two new approaches to generate tests
that can both improve the reliability of the generated code (even if a programmer modifies
it) and provide artifacts from model checker results, where outputted counterexamples can be
reproduced in the generated code.

This text is organized as follows: Chapter 2 presents the necessary concepts for un-
derstanding the test generation process; Chapter 3 reviews other model-based testing works,
pointing out information that can be relevant to this research; Chapter 4 presents the proposed
strategy for the test generation including which information to use and how to connect it with
the implementation; Chapter 5 describes the problematic of decentralization and the solutions
to code and test generation; Chapter 6 develops two case studies, the first on a decentralized
termination detection algorithm and the second on a real blockchain bug; and Chapter 7 collects
final considerations for this stage of the work and presents a plan for next steps.

The complete implementation, including code and test generation and the men-
tioned examples in this work, is available publicly in the opensource repository at
https://github.com/bugarela/tla-transmutation.

https://github.com/bugarela/tla-transmutation
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2 CONCEPTS

TLA+ is a specification language combining the TLA (Temporal Logic of Actions) logic,
and the Zermelo-Fraenkel set theory (ZFC) (MERZ, 2003). TLA was proposed by Lamport
(LAMPORT, 1994) and is based on transition systems - specifically Kripke structures - where a
set of allowed transitions is modeled as one or more actions. A specification written in TLA+

can be used as the input to a model checker that can check it against properties also defined in
TLA+ to whether prove the satisfiability of that property or falsify it with a counterexample. This
chapter presents concepts for transition systems, model checking and TLA+ itself.

2.1 TRANSITION SYSTEMS

Transition systems are abstractions to describe the behavior of systems in a mathemati-
cally precise and unambiguous manner. They can be understood as directed graphs with states as
nodes and model transitions as edges. A state describes some system information at a specific
time, and a transition describes how a system can change from one state to another (BAIER;
KATOEN, 2008).

A transition system is a tuple (S ,→,I ) where

• S is a set of states,

• →⊆ S ×S is a transition relation, and

• I ⊆ S is a set of initial states.

The transition system is said to be finite if and only if S is finite. In finite transition
systems, a behavior given by a sequence of states can still be infinite.

The set of successors of a state s is defined as Post(s) = {s ′ ∈ S | s → s ′}. A transition
system is called deterministic if |I | ≤ 1∧∀s ∈ S : |Post(s)| ≤ 1. In this work, when it’s said
that non-determinism happens at a state s , it is meant that |Post(s)|> 1.

2.1.1 Kripke structures

Kripke structures are types of transition systems with one additional restriction: →
must be left total, that is, ∀s ∈ S ,∃s ′ ∈ S : s → s ′. This restriction implies that all behaviors are
infinite. In Kripke structures, termination can be expressed as a state with only one self-transition.

A simple example of transition systems is the traffic semaphore, which has three possible
states (green, yellow and red) and three possible transitions (green→ yellow, yellow→ red,
and red→ green). A traffic semaphore starting at any color (I = S ) can be represented with the
Kripke structure in Figure 1.
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Figure 1 – Kripke structure for a traffic semaphore. Gray states are initial states.

2.2 MODEL CHECKING

From finite transition systems, usually Kripke structures, defining possible behaviors with
precision, the system’s states can be explored with different techniques such as model checking,
where all states are explored exhaustively; simulation, where some paths are chosen to be run;
and automated testing, which will try to execute a behavior with a real implementation.

Model checking is a verification technique based on exploring all possible system transi-
tions to prove that a given property is satisfied on all of them or finding a sequence that falsifies
it. A model checker works with two different inputs (AMMANN; BLACK; MAJURSKI, 1998):

1. A state machine defined in terms of variables, initial values for the variables and transitions
that change these variables when some condition over these variables is met.

2. Invariants and/or temporal formulas expressed as logic properties over the set of the
transition system’s possible paths.

The model checker conceptually explores all the state space for the defined state machine,
checking whether the properties are satisfied. It uses heuristics to navigate all reachable states,
where strategies for exploration are already well established. If a property is unsatisfied, the
model checker tries to output a counterexample: a sequence of states for which the property does
not hold. However, obtaining a counterexample may not be possible for some temporal formulas.

Model checkers present significant scalability issues due to the growth of state space
originating from variable addition. For N variables with a domain of k , there can be up to kN

states to explore, which is exponential growth. This is known as the state explosion problem.
When the state space is too large to be explored exhaustively, alternative techniques may

be applied to explore implicit regularities in the structure of the model (BAIER; KATOEN, 2008).
Symbolic model checkers are alternatives that represent the state space symbolically, commonly
using binary decision diagrams, that can then be solved by other tools such as SAT solvers.

2.2.1 Model checkers for TLA+

TLC is the first TLA+ model checker. It is an explicit-state model checker and works
by enumerating states produced by all behaviors allowed by a TLA+ specification. It keeps a
directed graph with states and transitions, called the reachability graph; and a queue of states
for it to check. By starting with evaluating the set of initial states and adding unvisited states
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reachable by them to the queue, it can navigate all distinct states checking properties for each of
them. However, as with any explicit-state model checker, it is susceptible to the state-explosion
problem.

Apalache is a symbolic model checker for TLA+ that translates the specification to a set of
quantifier-free logical constraints that can be solved by an SMT (Satisfiability-Modulo-Theory)
solver (KONNOV; KUKOVEC; TRAN, 2019). Apalache can only analyze finite executions of
bounded length - although it can be an issue for verifying properties, it is not a problem for
finding counterexamples to generate tests.

Both model checkers are limited and cannot handle all TLA+ operators. In fact, Lamport
states that “no model checker can handle all the specifications that we can write in a language as
expressive as TLA+ ” (LAMPORT, 2002). These model checkers also assume that:

• All specification parameters are fixed: although specifications can be parameterized, the
parameters’ values have to be specified in order to run the model checker - they will not
check all possible values for the parameters.

• All states are finite structures: reachable states and parameter values are finite structures.
All sets and records are finite, functions have finite domains, and so on.

2.3 TEMPORAL LOGIC OF ACTIONS+

TLA+ is a language to specify software focusing on distributed systems based on actions.
An action is a predicate over a pair of states called a step. If an action is true for a s → s ′ step,
then a transition from s to s ′ is part of the transition set of the model. Modeling a system with
TLA+ means specifying a set of behaviors - sequences of states - possible in that system. This
is done by specifying a temporal formula that is true for all the steps in those behaviors and
false otherwise. A system’s behavior can be checked against other temporal and non-temporal
formulas.

In a TLA+ spec, a system can be defined with two formulas: a predicate over the initial
state, defining a set of allowed initial states; and an action (often called Next) over the system
steps, defining a set of allowed transitions. An action can be interpreted as a conjunction of
predicates over a current state and predicates over the next state. In this work, predicates over the
current state will be called an action’s condition - meaning they represent a condition for the
transition to happen from that state.

As an example of basic TLA+ usage, consider the same traffic semaphore from Section
2.1.1. This transition system could be written as the TrafficSemaphore TLA+ spec presented
in Figure 2. In this spec, color evaluates the value for the variable color in the first state of
a step, while color ′ represents the value for the second state. The Next definition lists three
possible actions, and each one of them has a condition (predicate over the current color) and a
transition (which color to turn to). Although the TLA+ tools allow the definition of a spec with
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MODULE TrafficSemaphore
VARIABLE color

TurnRed ∆

= color = “yellow” ∧ color ′ = “red”
TurnYellow ∆

= color = “green” ∧ color ′ = “yellow”
TurnGreen ∆

= color = “red” ∧ color ′ = “green”

Init ∆

= color ∈ {“red”, “yellow”, “green”}

Next ∆

= TurnRed ∨TurnYellow ∨TurnGreen

Figure 2 – TLA+ Specification for the traffic semaphore

the identification of an Init and a Next definitions, the same spec could also be defined with the
temporal formula:

Spec ∆

= Init ∧ [Next ]⟨color⟩

TLA+ syntax borrows elements from first-order logic and set theory. The logical operators
∧ and ∨ can be used both prefixed and infixed such that:

∧ e1
... ≡ e1∧·· ·∧ en

∧ en

and
∨ e1
... ≡ e1∨·· ·∨ en

∨ en

As a temporal logic, TLA+ includes the □ and 3 operators, standing respectively to
“always” and “eventually”. □F for a formula F is true for a behavior (that is, an execution) if
and only if F is true for every step of that behavior; 3F for a formula F is true for a behavior if
and only if F is true for at least one step in that behavior.

2.3.1 Stuttering Steps

The Next definition in the presented temporal formula is written as [Next ]⟨color⟩ as a way
to specify that Spec allows stuttering steps over the variable color . A stuttering step represents
self-transition, such that an action stating color = color ′ is always allowed. Stuttering steps are
essential to represent loops and crash states. Considering the traffic semaphore example, allowing
stuttering steps over color means the semaphore could get stuck forever in any possible colors.

2.3.2 Properties

With a system modeled as a TLA+ spec, desired properties of this system can be verified.
For TLA+ , properties are temporal formulas or invariants over specified actions. A property is
satisfied if and only if it is true for all the specified behaviors.

Safety properties define what a system can do, and a property of this type is violated, it is
violated in a specific behavior step (LAMPORT, 2002). They are defined as invariants, where an
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invariant is a predicate P that should be true for all the steps of all allowed behaviors of Spec,
such that the property can be verified by proving

Spec =⇒ □P

Liveness properties define what a system should do, violating these properties in a
behavior. For example, a traffic semaphore must eventually be red. If the system allows a
behavior where the semaphore switches only between yellow and green, this liveness property
would be violated by that behavior.

Liveness properties can be weak fairness properties, or strong fairness properties (LAM-
PORT, 2002). Weak fairness for a state formula f and an action A is defined as WFf (A). It
is true for a behavior if and only if a non-stuttering A step is infinitely not enabled or infinite
non-stuttering A steps occur. A non-stuttering step can be defined as A∧ (f ′ ̸= f ), which can
also be expressed as ⟨A⟩f . Therefore, WFf (A) is defined as

□(ENABLED A =⇒ 3⟨A⟩f )

However, if an action is repeatedly enabled and not enabled throughout a behavior, weak
fairness makes no guarantee that this action will ever occur in that behavior since it requires that
the action is continually enabled to ensure its occurrence. This stronger guarantee is provided by
strong fairness. Strong fairness for a state formula f and an action A is defined as SFf (A). It
states that if A is always eventually enabled, then a ⟨A⟩f step should eventually occur and can be
expressed as

□3ENABLED A =⇒ □3⟨A⟩f

The model checker is also able to check for deadlocks. A deadlock is a state where no
transitions can be made, and for some specifications, it can represent termination. The property
asserting that a model never reaches a deadlock is a temporal formula ensuring the following
state formula Next is always enabled, granting that a Next step can always be performed.

□(ENABLED Next)

2.4 TEST GENERATION BY MODEL CHECKING

Automated tests for software are implementations that define an expected result for some
code evaluation, run a specific code instruction and compare its output with the expected result,
reporting an error when they do not match. Although any code piece with any parameters can
be tested, to minimize a test suite (the set of all defined tests) code size and time to run, it’s
desirable that different tests capture different aspects of the code. A test setup is referred to as
a test scenario, including what code is being tested, which values are given as parameters, and
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what is the expected outcome. This section describes how relevant test scenarios can be obtained
from model checkers.

A counterexample produced by the model checker can be used as a test scenario for
the specified system. With this intent, a system’s desired properties can be negated to find
counterexamples that hold for the original property, which can then be used as a scenario. The
negation is necessary since a well-specified system will satisfy all the desired properties and
therefore generate no counterexamples.

A property used with the intent of generating a counterexample is called a trap property,
and the generated counterexample is called a witness of that property. A trap property is conside-
red feasible if the model checker successfully finds a counterexample for it, and unfeasible if it
finishes exploring the state without finding any violations. Unfeasible trap properties cannot be
used for generating tests as it is not known how to test the property. There is also the possibility
that the model checker cannot explore the entire state space in feasible time because of the
state explosion problem. If no counterexample is found and the exploration did not finish, it
is unknown whether the trap property is feasible (ARCAINI; GARGANTINI; RICCOBENE,
2015).

Another concept in test generation is test harness, which refers to the implementation
that allows for the tests to be run with the actual code. Mapping counterexamples to tests and
implementation states to specification states are examples of test harness implementation. Some
test generation tools require harness definition from the programmer in order to work.

Chapter 3 gathers more information about test generation by model checking in model-
based testing, and Chapter 4 elaborates on the specific techniques used for this work.
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3 RELATED WORK

This section describes some existing material on model-based testing, property-based
testing and TLA+ specific initiatives. The exploration of this material was the theorical basis for
the test generation methodologies proposed in this work.

The work in (HONG et al., 2002) uses a symbolic model checker such as SMV (Symbolic
Model Verifier) to obtain states, controlling the state explosion problem. Models are defined as
EFSMs (Extended Finite State Machines), and properties are written on CTL (Computation Tree
Logic), a branching-time temporal logic, to use the model checker to obtain counterexamples
to be used as test scenarios. This work also defines formally different coverage criteria that
can be used to measure the quality of a test suite: state coverage, transition coverage and data
flow-oriented coverage, along with heuristics to apply them. Since a single CTL property can
have multiple witnesses, choosing a witness for each property becomes an optimization problem
where the suite length and duration should be minimized while the coverage constraints are met.
The authors prove this optimization problem to be NP-Hard.

A different approach in (VISSER; PǍSǍREANU; KHURSHID, 2004) uses the Java
Pathfinder, a model checker for Java using the JVM, to generate test inputs for complex data
manipulation. To efficiently generate tests while keeping high coverage, they use symbolic
execution as a form of abstraction, where a set of constraints is calculated over the inputs for each
possible executable path. The constraints are then solved to generate a minimal test suite covering
all those paths. The authors present a case study on red-black trees where an invariant asserting
validity of the tree, accordingly to red-black tree constraints, is checked across behaviors.

The applied work in (XIA; VITO; nOZ, 2005) generates tests from C code and require-
ments in the form of properties. The C program is abstracted using predicate abstraction, and
any unfeasible paths found later by the model checker can help to refine this abstraction. The
model checker receives the abstraction and the requirements as trap properties and outputs a
counterexample in the form of an execution path. The path is considered unfeasible if it is not
allowed by the original program, and the abstraction is refined by new predicates. If the path is
feasible, its inputs and outputs result in a test. The authors apply these techniques to avionics
systems, showing an example from a Boeing 737 autopilot simulator.

Another application of model checking-based testing in (MOHALIK et al., 2014) to
safety-critical systems is done in General Motors, where model checker-generated inputs are
compared to random inputs and guided simulation in a set of real-life case studies at the company.
The authors show that these other existing techniques were not enough to provide high test
coverage and proof of unreachability, while combining them with model checking-based tools
achieved the best result in terms of coverage.

The industrial evaluation in (ENOIU et al., 2016) proposes a test generation technique
using a model checker for the Function Block Diagram language, widely used in industrial
safety-critical components. The generated tests are meant to complement requirement-based
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tests with a structural perspective, and they can be generated using different coverage goals. The
proposed tool was used to generate tests and analyze coverage for 157 different programs.

The work in (KOO; MISHRA, 2009) proposes property and design decomposition
procedures to make the test generation process more efficient in order to apply it to formally
verified microprocessors. The generation technique uses decompositional model checking, and
both the model and the properties are decomposed to avoid the state explosion problem. The
used model checker is also bound (BMC - Bounded Model Checking), which is an approach
to limit the number of transitions made by the model checker. With SAT-based BMC, used in
this work, after the BMC reaches the transition limit, the model is converted to a satisfiability
problem and sent to a SAT solver to obtain a counterexample.

Another decompositional technique in (ARCAINI; GARGANTINI; RICCOBENE, 2015)
decomposes the system model into subsystems by exploiting the variables’ dependency in a way
where a subsystem’s output is used as part of another subsystem’s input. These subsystems are
then sent to the model checker to obtain counterexamples which are later combined to obtain
tests for the system as a whole. The proposed technique reduces test generation time by avoiding
the state explosion problem by checking smaller subsystems instead of the system itself.

A model checker is used in (ROBINSON-MALLETT et al., 2006) to generate characteri-
zation sets used in black-box testing. Black-box testing is a type of test that inputs values to a
system and check its outputs without being able to see the internal state. Characterization sets
are useful in black-box testing since each input sequence on the set produces different outputs
for each different initial state.

The reviewed works showed different approaches to the test generation process using
model checking, where some of them focused on improving efficiency, others on coverage
criteria, and many had objectives that were a combination of both, showing how they relate. The
test generation works used a similar set of strategies with variations mainly involving efficiency
improvements and the area or language of the application. The work proposed here also uses
some of the observed strategies and concepts, including the usage of negated versions of satisfied
properties to obtain counterexamples and differentiation between black-box and white-box
testing. This work’s primary variation is the application to the TLA+ language, since similar
works in TLA+ are not present in the literature.

3.1 RELATED WORKS IN TLA+

There are no published works generating tests from TLA+ specification at the time of the
writing of this dissertation. However, some works in progress were presented at the 2020 TLA+

Conference, such as a model-based test generator based on TLC called Kayfabe (DORMINEY,
2020). This approach uses the model itself that TLC enumerates to make its exploration, checking
that every step of the program is a refinement of the model’s state. In order to explore the entire
state space efficiently, the method would need to find a state tour that minimizes revisited states,
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which, as the author shows, reduces to the NP-Hard traveling salesman problem. It is also shown
that test harness can have some limitations on how to map TLA+ values to concrete ones and on
considering some program side effects that are not present on the model.

Another work by Informal Systems, the company behind the Apalache symbolic model
checker for TLA+, obtains tests from counterexamples produced by Apalache itself (KUPRIA-
NOV, 2020). The test generation technique is part of the verification-driven development process
(VDD) developed at the company, which begins with an English specification, that is manually
translated into a TLA+ specification and later to code. The model-based testing reduces the gap
between specifications and implementations in this flow.
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4 TEST GENERATION

The proposed work aims to produce test scenarios automatically and test the code
generated by (MAFRA, 2019) using the same TLA+ specification. While the code generator uses
the model specification alone, a test generator can benefit from the usage of other information
such as specified properties and interactions with a model checker. This additional information
can be used to obtain valid behaviors accordingly to the specification, which can then be
used to test the generated code since a valid behavior for the specification must be valid in the
implementation. If any behavior allowed by the specification is not allowed in the implementation,
there is an error in the translation process, or some error was introduced by modifying the
generated code.

Generated tests run against Elixir code (Elixir Core Team, ) that is generated by the same
tool. Elixir is a functional programming language heavily based on Erlang (ARMSTRONG;
VIRDING; WILLIAMS, 1991) process communication and Ruby (COMMUNITY, 2021) syntax.
The motivation for generating Elixir code instead of any other language is based on several
reasons:

1. Reliable concurrency and inter-process communication from Erlang’s virtual machine
(BEAM) usage, which is essential to support concurrent and distributed systems that are a
focus of TLA+ .

2. The functional paradigm is declarative over operational, similar to the TLA+ syntax. This
helps to keep correspondence between definitions in each language.

3. Elixir is focused on legibility and maintainability, borrowing a lot from Ruby’s syntax,
which is desirable to provide an artifact that can actually be adapted and upgraded, making
it more suitable to run in a real-life environment.

4. The BEAM provides platform transparency, making the generated code suitable for a more
significant number of environments.

5. Elixir is open source under the Apache 2.0 license, which is crucial to ensure further
correspondence between code and spec on all levels.

After obtaining test scenarios, the generator must be able to couple them with the code
in order to run them. The scenario’s initial state has to become an input, and the program’s
execution behavior must be comparable with the sequence of states from the rest of the scenario.

From behaviors obtained either from the state exploration graph or a counterexample,
executing tests means checking that each behavior should be executable in the implementation.
Since this work focuses on generating tests for code generated by (MAFRA, 2019), the proposed
harness is restricted to these code interfaces, but it is possible to adapt everything to other
implementations with similar interfaces.
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Generated tests are static and only need to be re-generated if the model or the properties
change. There is no coupling with the model checker or the test generator after the tests are
generated. The test suite should run independently within the Elixir project.

This chapter describes two different test approaches: white-box and black-box tests.
White-box tests check internal states, while black-box tests are restricted to checking output.
Black-box testing is implemented in this context by checking only stages with non-determinism,
which on generated code turns into interaction with external factors through the oracle. The
oracle can be used to choose an action accordingly to the behavior being tested, and the test
should fail if the choice is not possible. These black-box tests act like integration tests in software
engineering terminology and can also be used as regression tests. When a bug is found in an
application being developed, a test is often written to reproduce the bug scenario and expect the
correct outcome, so further updates after the bug fix cannot re-introduce it without breaking a
test. Model checking specifications of software can also find bugs, and this sort of test generation
provides an automated form of verifying the bug scenario’s outcome in the implementation.

In contrast, white-box tests act like unit tests, where all implementation states, including
internal ones, are checked against model information. An internal state is any state that is not
directly influenced by the user or exposed to them. In some software testing applications, internal
states are not accessible, and thus, white-box testing is impossible. In this work’s scenario,
however, both model and implementation internal states are available since the specification is a
requirement to test generation, and the implementation is generated to the next function that
can be called repeatedly to obtain any state.

To exemplify some techniques, the didactic TLA+ specification for multiple traffic
semaphores is given in Figure 3. This specification consider a set of semaphores under the
following requirements:

1. The sequence of colors for each semaphore should always be “red”, “green”, “yellow” and
back to “red”;

2. Two different semaphores should never be “green” at the same time;

3. Opening of semaphores (turning “green”) should alternate.

In this spec, alternation is controlled by the next to open variable, which cycles through
the list of semaphores, and a specific semaphore can only turn green if all semaphores are red,
and it is the next to open. The following properties are defined for the specification based on the
requirements:

no collision ∆

= Cardinality({s ∈ SEMAPHORES : colors[s] = “green”})≤ 1
never stuck ∆

= WF⟨colors⟩(Next) =⇒ ∀s ∈ SEMAPHORES : 3(colors[s] = “green”)

no collision is an invariant establishing that at every state, the number of green se-
maphores should be less than or equal to 1. never stuck is a temporal formula asserting that if
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MODULE TrafficSemaphores
EXTENDS Integers, FiniteSets
VARIABLE colors, next to open
CONSTANT SEMAPHORES

TurnGreen(s) ∆

= ∧∀s2 ∈ SEMAPHORES : colors[s2] = “red”
∧ colors ′ = [colors EXCEPT ![s] = “green”]
∧next to open = s
∧next to open ′ = (s +1)%Cardinality(SEMAPHORES )

TurnYellow(s) ∆

= ∧ colors[s] = “green”
∧ colors ′ = [colors EXCEPT ![s] = “yellow”]
∧ UNCHANGED ⟨next to open⟩

TurnRed(s) ∆

= ∧ colors[s] = “yellow”
∧ colors ′ = [colors EXCEPT ![s] = “red”]
∧ UNCHANGED ⟨next to open⟩

Init ∆

= ∧ colors = [s ∈ SEMAPHORES 7→ “red”]
∧next to open = 0

Next ∆

= ∃s ∈ SEMAPHORES : TurnGreen(s)∨TurnYellow(s)∨TurnRed(s)

Spec ∆

= Init ∧2[Next ]⟨colors,next to open⟩

Figure 3 – TLA+ Specification for multiple traffic semaphores working together

weak fairness of the Next state action for the variable colors holds, then all semaphores should
eventually be green. The weak fairness condition for this property is necessary since it would
never hold when stuttering steps over colors occur forever.

4.1 WHITE-BOX TESTING

White-box tests are granular unit tests that look inside the implementation, checking that
every transition is correct. It does so by comparing the transitions from every state to a graph of
states explored by the TLC model checker.

4.1.1 Specification information to obtain scenarios

Obtaining scenarios directly from the TLA+ spec would be susceptible to errors in the
translation process between TLA+ structures and test structures. The transition system could
instead be obtained directly from the TLC model checker, which exhaustively explores all states
and can output which states were visited. This information is provided exclusively by the model
checker TLC. TLC is an explicit state model checker and therefore enumerates all states and
transitions while model checking a specification. The produced information about states and
transitions is the main source of information for generating white-box tests. This information is
unavailable in the Apalache model checker as it does not enumerate all states.
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When running TLC, it is possible to ask it to dump explored states into a file. It generates
a .dot file composing the states in a graph that can be rendered with GraphViz to obtain a
visual representation such as the one in Figure 4 generated from the Traffic Semaphores spec
with SEMAPHORES = 0,1. Any tour on this graph beginning on a valid initial state should be
possible in the implementation - if not, then the implementation is incorrect.

Figure 4 – State graph for the traffic semaphore spec generated by TLC. Gray states are initial
states.

A limitation of this graph generation feature is that it is not able to inform which actions
are used to generate each transition. The only information about the transition is the two states it
is connecting. Therefore, in order to apply these transitions to the implementation, there are two
options:

1. Derive which action would make the transition possible from the TLA+ model and choose
it, or

2. Inspect the internal state that would result from each possible action and choose the one
that results in the transition result state.

Option 2 was shown to be a good interface solution as it was also useful for handling
counterexample information.
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In order to generate a complete graph, TLC has to enumerate all states. Therefore, when
running TLC to generate the state graph, the property being checked should be satisfied. If it is
not, TLC can find a counterexample before exploring the entire state space and output a partial
state graph. For that, a simple property as MyProperty ∆

= TRUE can be used.
The output format is visualization-driven, mainly containing graphical information like

colors and coordinates. A simple script was written to clean up this output into a normalized
and filtered .json file that can be easily parsed by the tool. In this script, the dot CLI tool is
used to convert the .dot file to JSON format that is then processed with jq to filter out noise
information.

4.1.2 Test Harness

The following state action is the main definition of the system’s state transitions. Upon
informing the translation tool that an action Action ∆

= A is the next state action, its name will
be translated as main, since it should be invoked at the start of the program’s execution. In its
original implementation, the function receives the state, represented as a hash, as its parameter
and invokes itself recursively with the result of the application of its transition over the received
state.

Since the main function itself does the loop control, there is no external way of stopping to
make checks at each state, which would be necessary for testing. Therefore, this implementation
had to be slightly changed in order to keep the loop control outside this function, in a way where
there is a function that can be called to execute a single transition. This function is called next

and takes a state as an argument and returns a list of possible next states. The main function is
kept as a one-point interface called at the beginning of execution, which calls next repeatedly
and uses the oracle to chose transitions from that given list when it has more than one possible
transition.

Using this new next interface, white-box tests are generated from the JSON state graph
to output a unit test file where each test calls next for a state, represented by a node in the graph,
and asserts that it returns a list matching the transitions from that state, represented by outgoing
edges in the graph. To run tests, Elixir provides a built-in testing library called ExUnit (TEAM,
2021) that is used to execute behaviors and make assertions.

4.1.3 Example

From the state graph in Figure 4, a test file with 118 lines is generated with 6 unit tests
(one per state/node). One of them is presented below.

test "fromState 7" do

variables = %{

colors: %{0 => "red", 1 => "red"},

next_to_open: 0
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}

expectedStates = [

%{

colors: %{0 => "green", 1 => "red"},

next_to_open: 1

}

]

actions = TrafficSemaphores.next(variables)

states = Enum.map(actions, fn action -> action[:state] end)

assert Enum.sort(Enum.uniq(states)) == Enum.sort(Enum.uniq(expectedStates))

end

The unit tests can be run with the Mix build tool, which includes ExUnit support, by
running mix test. When there is a failure, the output shows the two-state lists for comparison,
and it is easy to spot the difference between them (which is also colored in the terminal emulator).
A failure example for the presented unit test is given below.

1) test fromState 7 (TrafficSemaphoresTest)

test/generated_code/traffic_semaphores_test.exs:4

Assertion with == failed

code: assert Enum.sort(Enum.uniq(states)) ==

Enum.sort(Enum.uniq(expectedStates))

left: [

%{colors: %{0 => "green", 1 => "red"}, next_to_open: 0},

%{colors: %{0 => "red", 1 => "green"}, next_to_open: 0}

]

right: [%{colors: %{0 => "green", 1 => "red"}, next_to_open: 1}]

stacktrace:

test/generated_code/traffic_semaphores_test.exs:18: (test)

4.2 BLACK-BOX TESTING

Black-box tests make assertions and guide executions using only the public interfaces
of the implementation, that is, the main() function and the oracle. A black-box test tries to
reproduce a trace in the implementation.



27

4.2.1 Specification information to obtain scenarios

The specified model contains enough information about the transition system to generate
tests for every state or every transition. However, using only the model information can be
inefficient since the problem of finding routes minimizing revisited states is a NP-Hard problem,
as shown in (DORMINEY, 2020).

Besides the model, a specification should contain properties to be verified. Section 3
mentions work related to model-based and property-based testing. A property can be translated
directly to tests, where an invariant can be an assertion on each state of any execution, and
temporal properties can check states accordingly to the timeline it imposes. Properties can also
be used to generate tests in conjunction with the model checker by obtaining counterexamples.
When asking a model checker to check properties that are not satisfied, it will try to produce a
counterexample for that property. This counterexample is a behavior (sequence of states) that is
allowed by the model and does not satisfy the property. This work focuses on model-based testing
using traces produced by model checking to obtain scenarios rather than using the properties
alone.

Both model checkers (TLC and Apalache) can be used to obtain counterexamples, as
their output format is similar. Therefore, one can benefit from trying both tools and using the
most performant one for a spec to generate counterexample-based tests. The two of them also
provide simulation functionality, which can be used to obtain samples of traces that respect the
model without a property dependency. The simulation functionality is a viable alternative for
witness-based test generation when there are few or no good properties specified.

A usual specification, however, will not have any unsatisfied properties ready to be used.
To obtain unsatisfied properties that can be used to generate counterexamples, the provided
satisfied properties have to be negated and turned into trap properties. A property can also be
decomposed into smaller properties to generate different (and often faster) counterexamples. One
simple way of altering the property to obtain different witnesses is to negate different parts of it.

Taking the never stuck property, for example, it is an implication A =⇒ B and thus can
be rewritten as ¬A∨B . Negating the whole property would result in A∧¬B , so any state that
satisfies B or doesn’t satisfy A would be part of a counterexample - and this is too general, often
the initial state will be a valid counterexample for itself, which is not an interesting behavior
to check. Generally, a counterexample will be better if it is a longer sequence since it would
test more transitions in the implementation. In this case, another possible negation would be
A =⇒ ¬B . A witness for this trap property would be a sequence where A holds but B does not,
which is more restricted and, therefore, will take more transitions to be falsified and thus can
generate a better counterexample. Therefore, the trap property for nevers tuck is built with the
negation of the implication result, ensuring that the witness occurs in a behavior where the weak
fairness holds:

trap ∆

= WF⟨colors⟩(Next) =⇒ ¬∀s ∈ SEMAPHORES : 3(colors[s] = “green”)



28

If a sequence of actions is produced as a valid counterexample for a model, then that
model’s implementation should allow this exact sequence of actions. Therefore an automated
test can be made by providing to the implementation the necessary inputs that will lead to this
behavior and checking if the behavior can be executed.

In the strategy for deriving trap properties, elaborating heuristics is not necessary to
improve property negation to obtain better counterexamples. Instead, the model checker can
check different negations for the same property. Then, the test generator tool can choose between
feasible properties, which counterexamples to use by a simple criterion such as sequence size.
However, this is a step of the test generation with low manual effort and a significant impact on
the results, so it is left for the tool user to decide which properties and their counterexamples or
simulation results are more relevant for testing, and automation of this selection can be explored
in a future work.

A similar trace can be obtained by running the model checker in simulation mode, where
an arbitrary number of traces of arbitrary length can be generated randomly, without the need
for a property to be contradicted. However, testing random simulation can be less interesting
than testing a trace related to a property since properties are usually important desired behaviors
specified by the specification designers.

Model checkers also provide options to generate multiple traces in the same run, such as
the maximum number of counterexamples to generate and a view. The view is a user-defined
state formula used by the model checker to determine if two counterexamples are different by
evaluating the view for each state in the counterexamples. The states are considered different if
and only if their views are different. This is useful to obtain all relevant scenarios in a single run,
i.e., one where a variable is negative, another where its value is zero, and a third with a positive
value.

A specification defines a set of behaviors, and the implementation should be able to
execute that same set. A trace can either be or not be part of this set: if it is, then it is expected
that the implementation can execute it; otherwise, it is expected that it’s impossible to reproduce
it in the implementation. The strategies listed up to this point described how to obtain valid traces,
but it is also possible to have black-box tests asserting that invalid traces are not reproducible.
One source of invalid testing traces worth testing can be old specification versions containing
bugs that led to undesired behaviors. If it is undesired in the model, it is also undesired in the
implementation.

4.2.2 Test Harness

The oracle is the other interface that comes to action when some non-determinism needs
solving. Non-determinism on TLA+ occurs in a state where the Next formula is true for more
than one step starting on that state - that is ∃ s1,s2 ∈ states | Next(s → s1)∧Next(s → s2).
There are different ways to go about it: the execution could be divided into branches running on
different parallel processes, determined by a random factor, or prompt the user for a choice. This
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will depend heavily on the scenario in which the generated code is running.
The chosen approach to handle such non-determinism is to isolate it with a concept

called oracle. Every generated code has an oracle process, and the main process sends a message
to this oracle every time it needs to decide something. The programmer can implement the
oracle decision behavior and has a simple interface: it receives a message with a list of possible
transitions to take and responds with the chosen action.

From a concurrency point of view, the oracle serializes messages so that the generated
code only processes one thing simultaneously. This is consistent with the definition that all
non-determinism is isolated to the oracle since concurrency is a kind of non-determinism.
Deterministic segments of the spec - sequences of transitions where only one action is enabled at
the time - can be viewed as critical zones or atomic operations, which are crucial to handling
concurrent systems consistently.

Algorithm 1 Algorithm for the TraceCheckerOracle
1: procedure START(trace, expected result, step, model)
2: if step trace length then ▷ All steps were reproduced
3: exit with: SUCCESS if expected result was true, else FAILURE
4: current variables← trace at step
5: message← wait for message
6: if message is a choice request then
7: respond with the action with state equal to trace at step + 1, or with "cancel"if not

found
8: start(trace, expected result, step, model)
9: else ▷ message is a new state notification

10: if new state is equal to trace at step + 1 then
11: start(trace, expected result, step + 1, model)
12: else
13: exit with: FAILURE if expected result was true, else SUCCESS

The only needed change at the oracle interface for test generation was an additional
message, where the main function notifies the oracle of a transition it does. This is necessary
so the oracle can keep track of a trace’s execution even in steps fully deterministic, where it
would not receive any information in the original implementation. With this update, a new
test-specialized oracle was implemented with the capacity to enforce a trace’s behavior upon
the generated code and, if it is correct, reproduce that trace. The algorithm for this new oracle
is presented at Algorithm 1 and consists of keeping a step counter and reacting to the two
possible messages: request choices, where it receives a list of actions and responds with the one
that matches the next desired state on the trace; and notifications, where it checks whether the
transition was correctly made and updates its step counter.
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4.2.3 Example

The perhaps most interesting example traces to be reproduced traces that once represented
a bug scenario. It is a typical software engineering practice to reproduce bugs with automated
tests when fixing them in order to prevent future changes from re-introducing the same bug - this
is called regression testing, tests that avoid regressing to the state where the bug happens.

As an example, consider a previous version of the traffic semaphore specification pre-
viously given in Figure 3, where variable next to open is never updated and, therefore, there
is no alternation control. In this version of the spec, it is possible for one of the semaphores
to repeatedly open and close while others stay red forever, which is undesired. The property
never stuck defines alternation since it states that all semaphores should eventually be green as
long as the colors variable is changing, and verifying this property results in the faulty behavior
where only one semaphore repeatedly opens (in this case, semaphore 1 changes color where
semaphore 0 stays red forever):

State 1: <Initial predicate>

/\ colors = (0 :> "red" @@ 1 :> "red")

/\ next_to_open = 0

State 2: <TurnGreen>

/\ colors = (0 :> "red" @@ 1 :> "green")

/\ next_to_open = 0

State 3: <TurnYellow>

/\ colors = (0 :> "red" @@ 1 :> "yellow")

/\ next_to_open = 0

Back to state 1: <TurnRed>

By providing this trace (named NoAlternation) to the black-box test generator and
specifying that the expected result is a failure, the following Elixir task is generated:

defmodule Mix.Tasks.NoAlternation do

use Mix.Task

@impl Mix.Task

def run(_) do

trace = [

%{

colors: %{0 => "red", 1 => "red"},

next_to_open: 0
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},

%{

colors: %{0 => "red", 1 => "green"},

next_to_open: 0

},

%{

colors: %{0 => "red", 1 => "yellow"},

next_to_open: 0

},

%{

colors: %{0 => "red", 1 => "red"},

next_to_open: 0

}

]

model = spawn(TrafficSemaphores, :main, [self(), Enum.at(trace, 0), 0])

TraceCheckerOracle.start(trace, false, 0, model)

end

end

Using the build tool Mix, this test can be run with the command mix no alternation,
which returns whether the test succeeded or not. In this code, variable trace is a direct translation
from the given trace, the model is run in the background, and the TraceCheckerOracle is the
oracle instance that will try to enforce the trace and produce the test output.

With the faulty version of the specification, where next to open is never updated, the
generated code can reproduce this trace and, therefore, the test fails (as the expected result was
that the trace should not be reproducible, see the second parameter to TraceCheckerOracle).
The test succeeds when the specification is fixed to make next to open be updated correctly as
the final spec in Figure 3, and the code is re-generated.

4.3 ADAPTIONS TO THE CODE GENERATOR

Along with the interface improvement from only main to next and main, the ability to
process non-determinism in any action was removed. That is, the new interface requires that all
non-deterministic choices happen at the next level only, meaning it is the only action function
that is allowed to return a list of transitions instead of a single one. In order to allow that for all
actions, some form of flattening procedure would need to be implemented, as done by the model
checkers (KONNOV; KUKOVEC; TRAN, 2019). Since that is not in the scope of this work, the
input spec is assumed to be flattened - that is, all non-determinism occurs on the Next action.
Any spec can be rewritten to satisfy this constraint.



32

Regarding parsing of specifications, the original tool implements a prototype of a TLA
parser, which evidenced how complex it is to parse pure TLA. Instead, the main parsing procedure
in the final version takes a .json version of the specification produced by the Apalache parser
(which uses SANY, the TLC parser, under the hood). This format has a better-defined structure
and is much easier to parse. In addition, the resulting parser can handle a broader set of TLA+

specifications and takes less effort to extend with new language constructs.
Along with minor bug fixes, a relevant improvement was made to allow support of

different kinds of definitions. In the original version, there was an assumption that all named
definitions referred to an action. However, using the tool with different inputs showed that
some specifications define named actions for auxiliary functions and values, which were not
appropriately translated as the tool assumed they were actions. Fixing this problem is not
trivial since it requires inferring kinds of TLA+ expressions (action or value) across the hole
specification. Lamport defines that TLA+ expressions have different levels, which can be inferred
(LAMPORT, 2002), but this inference is outside this work’s scope. The intermediate solution
applied requires the user to define which names of definitions refer to actions in the config file.
That is enough to distinguish between values and actions in the conversion from parsed JSON to
the tool’s internal specification representation.

The infrastructure of how the generated code is initialized along with the oracle is also a
change worth noting. While the original tool generated the model and its initializer on the same
file, defining the oracle process ID as a constant loaded at initialization which broke some build
tool commands; the current version properly generates the model as an elixir module and its
initializer as a mix task that can be invoked directly as a build tool subcommand. The task is
then responsible for spawning the oracle and providing its process ID to the model.

Finally, some significant changes were made to make the tool more suitable for the
decentralized systems’ environment. Chapter 5 gives a description of these changes and their
motivation.
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5 RUNNING AND TESTING DECENTRALIZED ALGORITHMS

Obtaining executable correspondence of declarative formulas is not trivial. Considering
distributed systems the target environment, two concepts need to be present in the execution
context: non-determinism and decentralization. Non-determinism is addressed by the oracle,
which establishes a straightforward interface around pieces of code where non-determinism can
occur. However, the oracle alone is insufficient to make the generated code decentralized.

In a centralized distributed system, with one central node and multiple distributed parts,
the generated code runs actions from the central part of the model, while distributed nodes can
be interfaces communicating through the oracle. For example, in an IoT (Internet of Things)
scenario, a central controller can run the model and be responsible for making decisions based on
values read from many sensors. In contrast, the sensors have no knowledge of the whole model
and just send messages to the oracle with values as they read them.

However, where does the model run when the specified system is entirely decentralized?
There is no specific node that is aware of every action. If the specification defines a producer
and a consumer, for example, the executable correspondent of it should be divided into two
parts: one responsible for the producer’s actions and the other for the consumer’s. This division,
however, cannot be derived from the specification alone, as TLA+ only defines actions and not
their actors. Therefore, the generation tool provides a configuration interface that allows users to
define groups of actions corresponding to different nodes in a decentralized system.

Centralized models can also describe an abstracted centralization that is not actually
centralized in the existing system. Abstractions like these are necessary to reduce the scope
of a model and maintain it within a feasible state space. For example, when modeling some
application that runs on top of a blockchain, the inner works of the blockchain do not need to be
modeled in the exact specification. Supposing another model already defines a blockchain and
its properties, the application specification can model the blockchain as a centralized object with
those properties. In this case, the code generated by the original tool would be fit to simulate a
blockchain, where the application would send its commands to the oracle to be computed on
this centralized node representing an abstracted blockchain - which is not very useful beyond
simple simulation. The application code following the specified protocols and restrictions is a
most useful executable artifact for this specification. The programmer can unplug this from the
abstracted blockchain and point it to an actual blockchain. With the implemented improvements
to the tool, the user can specify in the configuration file what actions are part of the application,
and each one is part of the blockchain, so the generated code for the application can be run
against a real blockchain (given the connection code is inserted after generation).

5.1 CONFIGURATION FILE

With the goal of automating as much of the code and test generation as possible, and
considering that there is no way of inferring the process distribution from the model alone, the
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new version of the tool requires a configuration file that describes how actions are distributed
between processes and which variables should be shared between those processes. Once the tool
requires a configuration file, it can also be used for metadata previously defined as command
line arguments or required manual updates of the generated files (as was the case for constant
values).

In the updated tool implementation, the configuration file is a JSON formatted file, and it
is the only parameter for code, white-box test, and black-box test generation commands, holding
the value for the following parameters:

• Processes: a list of objects with the process ID and the actions (defined as TLA+ strings)
it is responsible for;

• Shared variables: a list of strings with the shared variables’ names

• Constants: a list of objects with name and value (defined as a TLA+ string) for each
constant;

• Init: the name of the initial state definition in the specification;

• Next: the name of the next state definition in the specification;

• Input format: either JSON or TLA;

• Input file: the JSON or TLA file name, accordingly to the input format;

• State graph: the JSON file name with the formatted state graph, used for white-box tests;

• Black-box tests: a list of objects with the test name and its trace file name;

5.2 CODE GENERATION

The oracle’s role in a decentralized scenario is more complex. It acts as an abstraction for
inter-process communication by storing some user-defined shared variables and providing reads
and updates, controlled by locks, to nodes in order for them to execute their actions. Each node
starts independently since it can be run at any time and place. Then, it tries to obtain the lock
from the oracle and read the current state by combining its private variables with the shared ones
obtained from the oracle. It then either performs an action or stays at the same state, informing
the oracle about the resulting state, so it can update the shared variables’ values and release
the lock. If a node’s actions have non-determinism between them, the node can have its private
oracle to handle this non-determinism without having access to any shared information at all.
Algorithm 2 describes how the decentralized processes communicate with the oracle.

As for the oracle implementation, it maintains the variables value for the current state,
the lock-related variables, and can have other variables related to its specific implementation
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Algorithm 2 Algorithm for a processes’ main function
1: procedure MAIN(oracle)
2: variables← wait lock from oracle
3: possible actions← next(variables)
4: if size of possible actions is 1 then ▷ Deterministic
5: notify oracle of transition to the single action in possible actions
6: else ▷ Non-deterministic
7: send a choice request with possible actions to the oracle
8: response← oracle response
9: if response is cancel then

10: new variables← variables
11: else
12: new variables← response
13: notify oracle of transition to new variables
14: return main(oracle)

(i.e., the TraceCheckerOracle maintains a trace and the step index). Other than that, it works
by reacting to incoming messages as follows:

• Upon receiving a lock request, it checks its lock-related variables and responds with
either

– Already lock; or

– Lock acquired + shared variable’s value, updating the lock-related variables and
starting to monitor the process which obtained the oracle;

• Upon receiving a choice request along with a list of actions to choose from, it performs
its choice implementation and responds with the chosen action (i.e., the RandomOracle
will choose a random action from the provided list)

• Upon receiving a notification with the new values for the variables, it updates its internal
value for the shared variables. Notifications are not responded.

• Upon receiving a termination message from the monitored process, that is, the process
that holds the lock frees it. Therefore, this message is not responded.

5.3 WHITE-BOX TEST GENERATION

Testing this decentralized generated code is also more complex. For white-box tests,
instead of matching transitions from a state to a call of next() from that state, the test actually
matches the transitions to a combination of next() calls from all the generated nodes. The result
is one white-box test file per specification testing all the generated files. These tests also act as
a way to ensure that the user-defined distribution of actions per node is complete since if any
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action is unassigned, its transitions will be missing, and the test will fail. This testing process is
illustrated in Figure 5.

Figure 5 – White-box tests for decentralized processes

5.4 BLACK-BOX TEST GENERATION

Black-box tests run with an oracle implementation, so a single oracle is defined to work
both as the node’s private oracle and the communication oracle. This oracle is more active than
other ones, which just wait for decision or lock requests, as it needs to start all nodes and control
the execution order to follow the tested trace’s path. It releases the lock to one node at a time and
waits for the resulting state: if it matches the next step on the trace, the transition is accepted,
and shared variables are updated; otherwise, it responds to the node with a rejection, and queries
the next one by releasing the lock for it. If the oracle is queried for a non-determinism resolution,
it behaves the same (see Algorithm 1) by choosing only transactions that result in the desired
state when present. If in a same step of the trace, none of the nodes can perform a transition that
results in the next state of the trace, the test fails.

Figure 6 – Example of interactions with the oracle in black-box testing

A black-box test representation is given at Figure 6. First, process 0 needs help from
the oracle to solve the non-determinism between X and Y, and the oracle looks at the trace it is
checking and the current step counter, responding with X since it is the first state. Later, process
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1 performs a transition to state Y and notifies the oracle of it. As the transition matches the trace’s
next state, the oracle accepts it and responds with OK. Then, process 2 notifies a transition to W,
which is not expected and therefore refused with a “cancel” response - which does not fail the
test until all other processes also have their actions canceled.
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6 CASE STUDIES

This section describes two case studies where decentralized code and tests are generated
from specifications of a termination detection algorithm and a blockchain protocol.

6.1 CASE STUDY: DIJKSTRA’S TERMINATION DETECTION

Dijkstra’s algorithm for termination detection in distributed computations, referenced as
EWD840 (DIJKSTRA; FEIJEN; van Gasteren, 1983), is explored as a case study for the code
and test generation tool. In this algorithm, nodes are disposed of in a ring, and the first node can
initiate probes by sending messages to the last node to discover whether there are active nodes in
the ring. The message is a token that can be black or white. Each node has its color, which can
also be black or white. A node can be active or passive, and only active nodes can wake up other
passive nodes - therefore, once all nodes are passive, they will stay passive forever, and this is
the termination that should be detected by a probe initiated by the first node. This information is
encoded in four TLA+ variables:

VARIABLES active, color , tpos, tcolor

Nodes ∆

= {0, 1, 2}
Init ∆

=

∧active = [n ∈ Nodes 7→ TRUE]

∧ color = [n ∈ Nodes 7→ “white”]
∧ tpos = 0
∧ tcolor = “black”

active and color are functions that map the active/passive status and color of each node.
tpos is the token position and, tcolor , its color. According to the algorithm specification, the only
requirement at the initial state is that the token color is black, and all other values in this Init
definition are assigned arbitrary type-correct values.

In a ring with N nodes, node 0 sends a black token to node N −1, which then propagate
the token through the ring until it reaches node 0 again. The token changes its color to black or
white depending on the emitting node’s color. If a white token reaches node 0, the node’s color
is also white and not active, then termination is detected for all nodes in the ring. As follows, the
InitiateProbe action defines the probe start, which can only happen when the token is in node 0,
and either black or the node color is black. Then, the node and the token become black and the
token position switches to N −1. Formula terminationDetected defines conditions for a state
to be considered a termination detection.

InitiateProbe ∆

=

∧ tpos = 0
∧ tcolor = “black” ∨ color [0] = “black”
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∧ tpos ′ = N −1
∧ tcolor ′ = “white”
∧active ′ = active
∧ color ′ = [color EXCEPT ![0] = “white”]

terminationDetected ∆

=

∧ tpos = 0∧ tcolor = “white”
∧ color [0] = “white” ∧¬active[0]

When the token is in any other node i , it can be passed to node i −1 as defined by action
PassToken(i). If it is not active, the token is white, and its color is white, it propagates the token.
If it is active, the token is white, and its color is white, it will not propagate any token as this
action will not be enabled. Otherwise, it sends a black token. This action also paints the node
white. The fact that this action is not applied for node 0 is ensured by the Next action, which is
defined later.

PassToken(i) ∆

=

∧ tpos = i
∧¬active[i ]∨ color [i ] = “black” ∨ tcolor = “black”
∧ tpos ′ = i −1
∧ tcolor ′ = IF color [i ] = “black” THEN “black” ELSE tcolor
∧active ′ = active
∧ color ′ = [color EXCEPT ![i ] = “white”]

Active nodes may also wake up passive nodes at any time. This action is described by
SendMsg(i , j ), where an active node i wakes up a possibly passive node j . If the activation goes
against the probe order in the ring, that is, ij , then i ’s color turns black.

SendMsg(i , j ) ∆

=

∧active[i ]
∧active ′ = [active EXCEPT ![j ] = TRUE]

∧ color ′ = [color EXCEPT ![i ] = IF j > i THEN “black” ELSE @]

Lastly, any active node i can become passive at any given time, which is represented by
action Deactivate(i).

Deactivate(i) ∆

=

∧active[i ]
∧active ′ = [active EXCEPT ![i ] = FALSE]

∧UNCHANGED ⟨color , tpos, tcolor⟩

The next state formula Next combines all these actions to form a valid transition system
for this algorithm: all nodes except 0 can propagate the token, and all nodes (with no exception)
can send activation messages to nodes different then themselves or deactivate themselves.
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Next ∆

= ∨ InitiateProbe
∨∃ i ∈ Nodes \{0} : PassToken(i)
∨∃ i ∈ Nodes : ∨∃ j ∈ Nodes \{i} : SendMsg(i , j )

∨Deactivate(i)

The main safety property TerminationDetection states that if the termination was detec-
ted in a state (as defined with terminationDetected at the beginning of this chapter), then all
nodes should not be active in that state. As for liveness, a temporal property is defined, stating
that if all nodes are passive in a state, termination has to be eventually detected in a future state.
That is, all nodes being passive leads to termination detection.

TerminationDetection ∆

=

terminationDetected =⇒ ∀ i ∈ Nodes : ¬active[i ]

Liveness ∆

=

(∀ i ∈ Nodes : ¬active[i ]); terminationDetected

This is a decentralized system, so the generator tool should be configured to generate
different files for each node. In the TLA+ specification, actions for different nodes are parameter-
ized by the node’s index, and the distribution configuration can use this parametrization: Node 0
is responsible for actions referring to initiating the probe, waking up other nodes, or deactivating
itself; Other nodes cannot initiate a probe but can pass the token to the preceding node, besides
waking up other nodes and self-deactivating.

6.1.1 Generated code

Generating code for the specification of this algorithm instanced with 3 nodes results in
the elixir modules:

1. A base module containing all the translated definitions and some shared auxiliary functions,
but no next(). This is an internal module that should not be used directly.

2. Three modules, one per node, containing the next() function for a node. This function
calls other functions defined in the base module and should result in all possible transitions
on a given state considering the actions under the node’s responsibility. That is, node 0
next() should list transitions for initiating probes while others shouldn’t.

3. One task to start and monitor the oracle - a random oracle is used for quickest simulation -
which starts with the translated initial state.

4. Three tasks to start each one of the nodes, also with the translated initial state and with the
oracle’s PID (Process Identifier) that is found by name from the BEAM’s global registry.
These tasks are generated separately because, in a realistic scenario, different nodes can be
started at different times and locations.
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The four different tasks (one for the oracle and one for each of the three nodes) can
be run from different machines as long as they are on the same network. The oracle’s address
(BEAM’s sname) is provided as a command-line parameter to the nodes’ tasks so it can be found
on the network. With the oracle in place being the random oracle, once all tasks are started, a
random simulation occurs with messages being exchanged between the oracle and the nodes and
transitions being computed.

6.1.2 Generated tests

The white-box testing strategy generates 110 unit tests for this specification with 3 nodes,
accounting for all 110 different states and 467 transitions. As an experiment, node 1’s code is
updated to perform no transition at all, and that causes a total of 68 tests to fail with missing
transitions. These guarantees full state coverage and full transition coverage for the model. One
example of a state with only one transition is presented below.

test "fromState 107" do

variables = %{

tpos: 1,

active: %{0 => false, 1 => false, 2 => false},

tcolor: "white",

color: %{0 => "black", 1 => "black", 2 => "white"}

}

expectedStates = [

%{

tpos: 0,

active: %{0 => false, 1 => false, 2 => false},

tcolor: "black",

color: %{0 => "black", 1 => "white", 2 => "white"}

}

]

actions =

List.flatten([

APAEWD840_node0.next(variables),

APAEWD840_node1.next(variables),

APAEWD840_node2.next(variables)

])

states = Enum.map(actions, fn action -> action[:state] end)
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assert Enum.sort(Enum.uniq(states)) == Enum.sort(Enum.uniq(expectedStates))

end

As for the black-box tests, the most interesting witness to be tested in a termination
detection algorithm is probably one that detects a termination. The property for termination
detection is the following.

terminationDetected ∆

=

∧ tpos = 0∧ tcolor = “white”
∧ color [0] = “white” ∧¬active[0]

TerminationDetection ∆

=

terminationDetected =⇒ ∀ i ∈ Nodes : ¬active[i ]

Negating the whole property results in a violation in the initial state since the left side of
the implication (terminationDetected ) is not satisfied by it, making the implication true and, its
negation, false. Therefore, negating only the right side of the implication is more useful, resulting
in a formula that asserts that if termination is detected, there is at least one active node. Running
the model checker with this formula will result in a 7-state counterexample where termination is
detected, and there are no active nodes, which is a witness to termination that can be used to test
the code.

State 1: <Initial predicate>

/\ tpos = 0

/\ active = (0 :> TRUE @@ 1 :> TRUE @@ 2 :> TRUE)

/\ tcolor = "black"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")

State 2: <InitiateProbe>

/\ tpos = 2

/\ active = (0 :> TRUE @@ 1 :> TRUE @@ 2 :> TRUE)

/\ tcolor = "white"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")

State 3: <Deactivate>

/\ tpos = 2

/\ active = (0 :> FALSE @@ 1 :> TRUE @@ 2 :> TRUE)

/\ tcolor = "white"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")
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State 4: <Deactivate>

/\ tpos = 2

/\ active = (0 :> FALSE @@ 1 :> FALSE @@ 2 :> TRUE)

/\ tcolor = "white"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")

State 5: <Deactivate>

/\ tpos = 2

/\ active = (0 :> FALSE @@ 1 :> FALSE @@ 2 :> FALSE)

/\ tcolor = "white"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")

State 6: <PassToken>

/\ tpos = 1

/\ active = (0 :> FALSE @@ 1 :> FALSE @@ 2 :> FALSE)

/\ tcolor = "white"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")

State 7: <PassToken>

/\ tpos = 0

/\ active = (0 :> FALSE @@ 1 :> FALSE @@ 2 :> FALSE)

/\ tcolor = "white"

/\ color = (0 :> "white" @@ 1 :> "white" @@ 2 :> "white")

The test task starts a TraceCheckerOracle with this witness as trace and the three
nodes. The oracle restricts the nodes’ transitions and choices, always respecting the oracle’s
interface to follow the desired trace. After all 7 states from the trace have been reached, the
oracle returns success, and all processes are killed. The termination task, named after the trace
name provided by the user, is presented below and can be run with the build tool by executing
mix termination.

defmodule Mix.Tasks.Termination do

use Mix.Task

@impl Mix.Task

def run(_) do

trace = [

# The translated trace, omitted for simplicity

]
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modules = [

APAEWD840_node0,

APAEWD840_node1,

APAEWD840_node2

]

pids = Enum.map(

modules,

fn m -> spawn(m, :main, [self(), Enum.at(trace, 0), 0]) end

)

TraceCheckerOracle.start(trace, true, 0, nil, pids)

end

end

6.2 CASE STUDY: ATTACK VECTOR ON A BLOCKCHAIN API

This second case study considers a production application in the blockchain environment.
A document published in (VLADIMIROV, 2016) refers to an API definition for token transfer in
the Ethereum blockchain and exposes a vulnerability in the protocol. This faulty API version is
later modeled with a TLA+ specification, and the attack trace can be found by model checking a
specification property.

This section will not discuss details about the protocol and the attack as this model is
significantly more complex than previous examples. Instead, this case study aims to demonstrate
how the proposed tool works and can be useful in a real production implementation.

The model for this API considers only three methods, and even so, the number of states
escalates too fast with the number of steps. TLC, which tries to enumerate all states at each
step, takes more than a few minutes to compute traces of length 7 and beyond, where about 40
million distinct states are found in runs up to that length. This model defined an infinite number
of states since there is a transaction counter that monotonically increases as transitions are made.
Therefore, generating white-box tests for the entire state space is not possible. It should be
possible to obtain partial white-box tests from a partial state graph, but this work did not explore
strategies like this.

Instead, a black-box test is generated from Apalache’s trace, representing the attack vector.
Apalache’s strategy for model checking performs better than TLC in finding a counterexample
for this model, resulting in a 9-step trace (that is, a sequence of ten states).

Code generation for this API is configured to output different files for agents and the
abstracted blockchain, with agents responsible for running client-side requests and the abstracted
blockchain committing the transactions. From the counterexample found by Apalache, a black-
box test is generated. By running the test, processes for three different agents are started, along
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with the blockchain-representing process, and the TraceCheckerOracle containing the 10-
state sequence configures the attack. The oracle can manipulate the agents into running the
attack sequence, which the blockchain process accepts as the test succeeds and the trace is
successfully reproduced. The ability to reproduce an attack or bug trace like this reduces the
gap between specification artifacts and production systems by allowing the agent code to take
simple modifications and run the methods in a production blockchain, demonstrating that the
found attack or bug is reproducible in production. Besides that, the ability to navigate through
a simulation of a trace in an executable code representing the entire model enables a better
understanding of the faulty behavior and the ability to explore other possibilities as trying to
change the code to prevent that specific sequence of steps to happen. It is reasonable to conjecture
that the playground available in this generated scenario allows more exploration than existing
tooling around TLA+ model checkers.

Lastly, if the model is updated to represent a new version of the API that fixes this
vulnerability, this test would break the code generated from that new model. The ideal lifecycle
of this test would be to update the expected result from successful reproduction to failure, turning
it into a regression test, stating that the described faulty behavior should not be executable in
new versions of the implementation from now on.
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7 CONCLUSION

Although TLA+ specifications are purely declarative, they are meant to be used to
describe algorithmic behavior, which should be simulatable, executable, and testable. The main
challenge is to define clear interfaces for the high-level abstractions that TLA+ enables. This
work transforms deep study in understanding TLA+ concepts and how they work in an executable
context into a tool that translates all of these concepts (conditions, transitions, non-determinism,
decentralization, state graphs, and counterexamples) into artifacts more familiar to engineers:
functions, tasks, inter-process communication, unit and integration tests.

The result is a full development environment generated from a single specification that
has the potential to help with learning TLA+ , by working as a playground for people writing
their first models, and mainly by reducing the gap between specification and implementation,
by providing simple interfaces to connect generated code from a specification with real-world
systems, validating integrations and reproducing bugs (and their fixes, as regression tests).

The ability to run the specified model contributes to the process of both learning and
debugging TLA+ specifications. Pursuing this goal, TLC included a REPL (Read Eval Print
Loop) capable of executing TLA+ expressions on a console. Generating code and tests is a
relevant additional step towards this objective, enabling the user not only to run the model, but
also to visualize how it can be represented in a real programming language, how the states
behave (with white-box tests), and easily manipulate the execution to follow a specific math
either automatically (with black-box tests and the TraceCheckerOracle) or manually defining
each step (by using an I/O oracle).

Besides qualities that improve the developers’ workflow in learning and debugging
models, which is a way of reducing the cost of modeling software, the tool has aspects that
are relevant to industry usage, which can be able to incentivize TLA+ usage in the industry by
significantly increasing the benefits of modeling software. These benefits include a low-cost
tested prototype obtained directly from the model and automated reproduction of bugs (either
found by model checking or created manually).

The fact that generated tests are testing generated code takes the test harness burden off.
Again, clear interfaces make for easy testing, where test files are self-containing (no external
data needs to be read), a single function is called, and the results are matched, resulting in high
readability and low indirection. This is an environmental advantage when compared to generic
model-based testing.

Future development of this work should focus on black-box testing and overall orchestra-
tion, as these can be useful features in multiple contexts. Black-box testing infrastructure can
bootstrap the system to a certain point and open it up for user-guided simulation. That would be
a great debugging tool as this is not possible with any model checker as of this writing. There are
also improvements to be made to the current implementation, including mainly user experience-
related features and user documentation which were not prioritized in the first validation-focused
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implementation.
Although TLA+ is untyped, Apalache implements a type system for it with comment-

based type annotations. This work’s tool implements untyped code generation from untyped
TLA+ , which evidently has no correctness benefits from a type system. Considering the possibi-
lity of typed TLA+ specifications, as any specification that can be model checked by Apalache, it
would be possible and beneficial to generate typed code and tests. As the current implementation
is not deeply coupled with Elixir, the code could be generated in another statically typed pro-
gramming language. The main necessary change would be to include types in parsing and the
tool’s internal representation.

Lastly, a relevant consideration is that the tool was developed for validation under some
experiment scenarios and has much to be improved in both the scope of specification constructs
accepted as input and the quality of output code. Realistically, qualifying it for industrial usage
would require a team of people to develop and maintain it. Nonetheless, the initially proposed
ideas for this work could be transformed into concrete implementation with few adjustments,
and adaptions to the project have gotten easier to make at each iteration, which evidenced a
well-designed project with potential for extension.
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