

Disciplina: DYNAMICS OF CONTROLLED SYSTEMS

DCS	4 Créditos
Ementa:	Physics-based multivariable control design for real-time, command-driven and
	disturbance-driven systems. Emphasis on application to practical issues in
	multi-axis precision motion control, power electronics current and voltage
	control, motor drive torque and flux control. Nonlinear state feedback design
	based on active manipulation of physical properties. Observed-based
	estimation methodologies for accurate, wide bandwidth sensor replacement.
	Innerent parameter sensitivity and bandwidth properties of Luenberger- and
	Gopinali-style observer topologies. Disturbance estimation and disturbance
	control design methodologies
Bibliografia	Lorenz R D (2007) Self-sensing as an integration focus for motor drives and
Dibilogi alla.	power devices in 'Electrical Machines and Systems 2007 ICEMS
	International Conference on', pp. 386-391.
	Briz, F.; Degner, M. W. & Lorenz, R. D. (2002), Generalization of linear
	control tools for complex vectors, in 'IFAC Conf., 2002. Proceedings of'.
	Schmidt, P. B. & Lorenz, R. D. (1990), Design principles and implementation
	of acceleration feedback to improve performance of DC drives, in 'Industry
	Applications Society Annual Meeting, 1990., Conference Record of the 1990
	IEEE', pp. 422-427 vol.1.
	Lorenz, R. D. & Schmidt, P. B. (1989), Combining drives of differing
	bandwidths to meet process objectives, in Proc. of the Controls Engineering
	Conf., 1989. Lorenz B. D. & Lowson, D. B. (1000) 'Elux and torque decoupling control for
	field-weakened operation of field-oriented induction machines' IEEE
	Transactions on Industry Applications 26(2), 290-295
	Lorenz, R. D. (2008). The emerging role of dead-beat, direct torque and flux
	control in the future of induction machine drives, in 'Optimization of Electrical
	and Electronic Equipment, 2008. OPTIM 2008. 11th International Conference
	on', pp. XIX-XXVII.
	Wolf, C. M. & Lorenz, R. D. (2011), 'Using the Motor Drive as a Sensor to
	Extract Spatially Dependent Information for Motion Control Applications',
	IEEE Transactions on Industry Applications 47(3), 1344-1351.
	Hafez, B.; Abdel-Khalik, A. S.; Massoud, A. M.; Ahmed, S. & Lorenz, R. D.
	(2014), 'Single-Sensor-Based Three-Phase Permanent-Magnet Synchronous
	Motor Drive System with Luenberger Observers for Motor Line Current
	Reconstruction, IEEE Transactions on Industry Applications 50(4), 2602-
	2015. Wang V: Tahayashi S. & Loronz P. D. (2012) Deadheat direct torque and
	flux control on low switching frequency induction machine drives using the
	enhanced flux observer and torque model in 'Energy Conversion Congress and
	Exposition (ECCE), 2013 IEEE', pp. 1786-1793.
	Jansen, P. L. & Lorenz, R. D. (1994), 'A physically insightful approach to the
	design and accuracy assessment of flux observers for field-oriented induction
	machine drives', IEEE Transactions on Industry Applications 30(1), 101-110.

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA - PPGEEL

Jansen, P. L. & Lorenz, R. D. (1994), 'A physically insightful approach to the design and accuracy assessment of flux observers for field-oriented induction machine drives', IEEE Transactions on Industry Applications 30(1), 101-110.