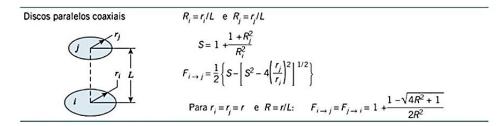

6

PROCESSO SELETIVO – 06 / 2023 Área de Conhecimento: <u>ENGENHARIA MECÂNICA</u>

PROVA ESCRITA – PADRÃO DE RESPOSTA

QUESTÃO 1

Suposições A superfície da base é um refletor e emissor difuso.


Análise Devemos determinar a fração da radiação deixando a base do recinto que escapa através da abertura na superfície superior. Na verdade, o que devemos determinar é simplesmente o fator de forma $F_{1 \to \text{anel}}$ da base do recinto para a superfície em forma de anel no topo.

Não temos uma expressão analítica ou um gráfico para fatores de forma entre área circular e anel coaxial, por isso não podemos determinar $F_{1 \to \text{anel}}$ diretamente. Contudo, temos uma tabela para fatores de forma entre dois discos coaxiais paralelos e sempre podemos expressar um anel em função de discos.

Vamos supor que a superfície de base de raio $r_1 = 10$ cm seja a superfície 1, a área circular de $r_2 = 5$ cm na parte superior seja a superfície 2, e a área circular de raio $r_3 = 8$ cm seja a superfície 3. Usando a regra da sobreposição, o fator de forma da superfície 1 para a superfície 3 pode ser expresso como

$$F_{1\to 3} = F_{1\to 2} + F_{1\to ancl}$$

Considerando a expressão analítica a seguir para calcular $F_{1\rightarrow 2}$ e $F_{1\rightarrow 3}$:

Temos:

$$F_{1\rightarrow anel} = F_{1\rightarrow 3} - F_{1\rightarrow 2}$$

 $F_{1\rightarrow anel} = 0.27 - 0.12$

$$F_{1 \to anel} = 0.15$$

ÇENGEL, Yunus A.; GHAJAR, Afshin J. **Transferência de calor e massa**: uma abordagem prática. Porto Alegre: AMGH, 2012. Capítulo 13.

PROVA ESCRITA - PADRÃO DE RESPOSTA

QUESTÃO 2

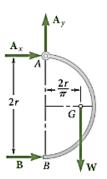


Figura 1 Diagrama de corpo livre da barra.

ANÁLISE

$$B = +\frac{W}{\pi}$$

$$B = +\frac{W}{\pi}$$

$$A_x = -B = -\frac{W}{\pi}$$

$$A_y = W \uparrow$$

$$B = \frac{W}{\pi} \rightarrow A_y = W \uparrow$$

$$B = \frac{W}{\pi} \rightarrow A_y = W \uparrow$$

Somando-se os dois componentes da reação em A (Fig. 2), obtemos

$$A = \left[W^2 + \left(\frac{W}{\pi} \right)^2 \right]^{1/2} \qquad A = W \left(1 + \frac{1}{\pi^2} \right)^{1/2} \blacktriangleleft$$

$$\operatorname{tg} \alpha = \frac{W}{W/\pi} = \pi \qquad \alpha = \operatorname{tg}^{-1} \pi \blacktriangleleft$$

As respostas também podem ser escritas da seguinte maneira:

$$A = 1,049W \ge 72,3^{\circ}$$
 $B = 0,318W \rightarrow 4$

BEER, Ferdinand. Mecânica vetorial para engenheiros: estática. Porto Alegre: AMGH, 2019. Capítulo 5.

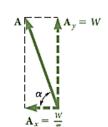
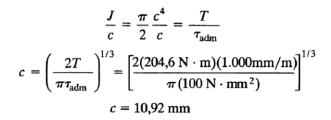


Figura 2 Reação em A.

PROVA ESCRITA – PADRÃO DE RESPOSTA

QUESTÃO 3

 $P = T\omega$. Expressando P em newtons-metro por segundo e ω em radianos/segundo, temos


$$P = 3.750 \,\mathrm{N} \cdot \mathrm{m/s}$$

$$\omega = \frac{175 \text{ rev}}{\text{min}} \left(\frac{2\pi \text{ rad}}{1 \text{ rev}} \right) \left(\frac{1 \text{ min}}{60 \text{ s}} \right) = 18,33 \text{ rad/s}$$

Assim,

$$P = T\omega$$
; 3.750 N·m/s = $T(18,33)$ rad/s
 $T = 204,6$ N·m

Aplicando a Equação 5.12, obtemos

Visto que 2c = 21,84 mm, selecione um eixo com diâmetro

d = 22 mm Resposta

HIBBELER, R. C. Resistencia dos Materiais. São Paulo: Pearson Education do Brasil, 2018. Capítulo 5.

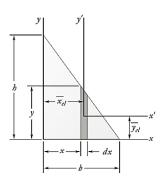
PROVA ESCRITA – PADRÃO DE RESPOSTA

QUESTÃO 4

a. Produto de inércia I_{xy} . Uma faixa retangular vertical é escolhida como elemento diferencial de área (Fig. 1). Usando uma versão diferencial do teorema dos eixos paralelos, temos

$$dI_{xy} = dI_{x'y'} + \bar{x}_{el}\bar{y}_{el} dA$$

Como o elemento é simétrico em relação aos eixos x' e y', observamos que $dI_{x'y'}=0$. A partir da geometria do triângulo, podemos expressar as variáveis em termos de x e y:


$$y = h\left(1 - \frac{x}{b}\right) \qquad dA = y \, dx = h\left(1 - \frac{x}{b}\right) dx$$
$$\overline{x}_{el} = x \qquad \qquad \overline{y}_{el} = \frac{1}{2}y = \frac{1}{2}h\left(1 - \frac{x}{b}\right)$$

Integrando dI_{xy} de x = 0 até x = b, obtemos para I_{xy}

$$I_{xy} = \int dI_{xy} = \int \overline{x}_{el} \overline{y}_{el} dA = \int_0^b x(\frac{1}{2}) h^2 \left(1 - \frac{x}{b}\right)^2 dx$$

$$= h^2 \int_0^b \left(\frac{x}{2} - \frac{x^2}{b} + \frac{x^3}{2b^2}\right) dx = h^2 \left[\frac{x^2}{4} - \frac{x^3}{3b} + \frac{x^4}{8b^2}\right]_0^b$$

$$I_{xy} = \frac{1}{24} b^2 h^2$$

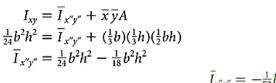


Figura 1 Utilização de uma faixa retangular vertical como elemento diferencial.

b. Produto de inércia $\overline{I}_{x''y''}$. As coordenadas do centroide do triângulo relativas aos eixos x e y são (Fig. 2 e Fig. 5.8A):

$$\bar{x} = \frac{1}{3}b \qquad \bar{y} = \frac{1}{3}h$$

Usando a expressão para I_{xy} obtida no item a, aplicamos novamente o teorema dos eixos paralelos:

 $\bar{I}_{x''y''} = -\frac{1}{72}b^2h^2$

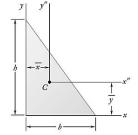


Figura 2 Centroide da área triangular.

BEER, Ferdinand. Mecânica vetorial para engenheiros: estática. Porto Alegre: AMGH, 2019. Capítulo 9.

Membros da Banca:

Nome (presidente):	Prof. Andre Hideto Futami	Assinatura
Nome: (membro):	Prof. Adolfo René Santa Cruz Rodrigues	Assinatura

Prof. Athos Henrique Plaine Nome: (membro): Assinatura _

Assinaturas do documento

Código para verificação: NF57Z32F

Este documento foi assinado digitalmente pelos seguintes signatários nas datas indicadas:

ANDRÉ HIDETO FUTAMI (CPF: 106.XXX.268-XX) em 20/11/2023 às 12:16:26 Emitido por: "SGP-e", emitido em 10/02/2020 - 15:14:30 e válido até 10/02/2120 - 15:14:30. (Assinatura do sistema)

ATHOS HENRIQUE PLAINE (CPF: 363.XXX.808-XX) em 20/11/2023 às 12:22:12 Emitido por: "SGP-e", emitido em 16/04/2019 - 16:13:58 e válido até 16/04/2119 - 16:13:58. (Assinatura do sistema)

ADOLFO RENE SANTA CRUZ RODRIGUEZ (CPF: 003.XXX.779-XX) em 20/11/2023 às 12:24:46 Emitido por: "SGP-e", emitido em 13/07/2018 - 13:11:44 e válido até 13/07/2118 - 13:11:44. (Assinatura do sistema)

Para verificar a autenticidade desta cópia, acesse o link https://portal.sgpe.sea.sc.gov.br/portal-externo e informe o processo UDESC 00051802/2023 e o código NF57Z32F ou aponte a câmera para o QR Code presente nesta página para realizar a conferência.