

PROCESSO SELETIVO – 02/2026

GABARITO - PROVA ESCRITA

Área de Conhecimento de Engenharias ou Ciências Exatas e da Terra – B.

Questão 1 (20%)
Explique os princípios básicos de sistemas de computação relacionados à execução de algoritmos e

programas. Em particular:
a) (7%) Defina o que é um algoritmo e o que é um programa de computador, destacando as diferenças

entre ambos.
b) (7%) Descreva como um algoritmo escrito em uma linguagem de alto nível é transformado em um

programa executável no computador (mencionando o papel de compiladores ou interpretadores, e do
hardware).

c) (6%) Comente sobre a importância das estruturas de controle (sequência, seleção e repetição) na
construção de algoritmos e na lógica de programação.

Resposta. Baseado em Forbellone & Eberspächer, Lopes & Garcia e Deitel & Deitel.

a) Algoritmo é uma descrição definida de passos para resolver um problema ou executar uma tarefa que

seja independente de uma linguagem específica. Programa de computador é a implementação concreta de um
algoritmo (ou de vários) em uma linguagem de programação específica que obedece às regras de sintaxe da
linguagem, de modo que possa ser traduzido e executado em um computador.

b) O processo começa com a escrita do algoritmo em uma linguagem de alto nível, gerando o código-

fonte. Um compilador traduz o código-fonte para uma forma de baixo nível e, em seguida, ocorre o linking
(coloquialmente “linkagem”) com bibliotecas para geral um executável. Para a execução, o sistema operacional
carrega o programa na memória e a CPU executa as instruções (em linguagem de máquina), manipulando
dados em registradores e memória e realizando operações de entrada e saída quando necessário.

c) As estruturas de controle são fundamentais pois expressam a lógica de um algoritmo de forma

estruturada. A sequência define a execução das instruções na ordem em que são descritas. Estruturas de
seleção (if/else, switch/case) permitem tomar decisões e seguir caminhos diferentes conforme condições
lógicas, o que torna o algoritmo adaptável a diferentes entradas e casos. Estruturas de repetição (for, while, do-
while) permitem executar um conjunto de passos múltiplas vezes, seja por um número conhecido de iterações,
seja até uma condição ser satisfeita. Isso é essencial para validação de entradas e para processamento de
dados (vetores e matrizes), além de viabilizar algoritmos clássicos como busca, contagem, e ordenação.

Questão 2 (20%)
Leia uma sequência de inteiros até EOF (fim de arquivo). Para cada inteiro x:

- se x = 0, ignore o valor e prossiga (não conta em nada);
- se x < 0, encerre o processamento imediatamente;
- se x > 0, acumule a soma apenas dos múltiplos de 3.
Ao final, imprima a soma.

Resposta. Segue um padrão de resposta em linguagem C.

#include <stdio.h>

int main(void) {
 long soma = 0;
 int x;

 while (scanf("%d", &x) == 1) {
 if (x == 0)
 continue;
 if (x < 0)
 break;
 if (x % 3 == 0)
 soma += x;
 }

 printf("%ld\n", soma);

 return 0;
}

Questão 3 (20%)
Considere um vetor (array) de n números inteiros desordenados.
a) (7%) Apresente um algoritmo para ordenar o vetor em ordem crescente;
b) (6%) Indique qual método de ordenação foi utilizado e analise a complexidade de tempo no pior caso

do seu algoritmo;
c) (7%) Caso exista, comente uma melhoria ou um algoritmo de ordenação alternativo que tenha melhor

eficiência, mencionando sua complexidade.

Resposta.
a) Segue uma resposta em linguagem C.
#include <stdio.h>

static void insertion_sort(int v[], int n) {
 for (int i = 1; i < n; i++) {
 int chave = v[i];
 int j = i - 1;
 while (j >= 0 && v[j] > chave) {
 v[j + 1] = v[j];
 j--;
 }
 v[j + 1] = chave;
 }
}

int main(void) {
 int n;

 if (scanf("%d", &n) != 1) return 0;

 int v[n];
 for (int i = 0; i < n; i++) scanf("%d", &v[i]);

 insertion_sort(v, n);

 for (int i = 0; i < n; i++) {
 if (i) printf(" ");
 printf("%d", v[i]);
 }
 printf("\n");
 return 0;
}

b) No exemplo acima, o método utilizado foi o insertion sort. No pior caso (vetor em ordem decrescente),

para cada posição i o algoritmo pode deslocar aproximadamente i elementos, totalizando cerca de 1
+ 2 + ... + (n-1) comparações, o que leva a complexidade de tempo O(n^2) no pior caso.

c) Um algoritmo com melhor eficiência no caso geral é o mergesort, com complexidade O(n log n) no

pior caso.

Questão 4 (20%)
O n-ésimo número de Fibonacci pode ser definido recursivamente como: F(0)=0, F(1)=1 e F(n)=F(n–

1)+F(n–2) para n≥2. Com base nisso:
a) (7%) Escreva um algoritmo recursivo que calcule F(n).
b) (6%) Escreva um algoritmo equivalente de forma iterativa (sem recursão).
c) (7%) Compare as duas abordagens em termos de conceito e desempenho, discutindo vantagens,

desvantagens e a ordem de complexidade de tempo de cada uma. Apresente um exemplo ilustrando a diferença
de eficiência para valores de n grandes.

Resposta. Conforme DEITEL & DEITEL, segue um exemplo de código para os itens a): função fib_rec

e b): função (fib_it).

#include <stdio.h>

long fib_rec(int n) {
 if (n <= 1) return n;
 return fib_rec(n - 1) + fib_rec(n - 2);
}

long fib_it(int n) {
 if (n <= 1) return n;

 long a = 0;
 long b = 1;

 for (int i = 2; i <= n; i++) {
 long c = a + b;
 a = b;
 b = c;
 }
 return b;
}

int main(void) {
 int n;
 if (scanf("%d", &n) != 1) return 0;

 printf("fib_rec(%d) = %ld\n", n, fib_rec(n));
 printf("fib_it(%d) = %ld\n", n, fib_it(n));
 return 0;
}

c) A versão recursiva expressa de forma a definição matemática. A versão iterativa expressa o cálculo

como uma acumulação em laço, evitando chamadas recursivas.

A versão recursiva (fib_rec) recalcula repetidamente os mesmos valores. O tempo de execução cresce

exponencialmente com n. A versão iterativa (fib_it) executa um laço de 2 até n, com trabalho constante por
iteração. O tempo de execução tem ordem O(n).

Como exemplo, para n grande (digamos n = 100), a versão iterativa faz apenas 99 iterações do laço e

termina rapidamente.
A versão recursiva faz um grande número de chamadas , tornando-se muito lenta. De modo prática, a

diferença é de muitas ordens de grandeza conforme n aumenta o que a torna inviável.

Questão 5 (20%)
Leia dois números inteiros m e n (1 <= m,n <= 20) e uma matriz A[m][n]. Com base nisso:
a) (8%) Imprima a soma de cada linha;
b) (8%) Encontre o maior elemento da matriz e imprima valor e posição (i,j);
c) (4%) Se m = n, calcule a soma da diagonal principal; caso contrário, informe “matriz não quadrada”.

Resposta. Segue um padrão de resposta em linguagem C.

#include <stdio.h>

int main(void) {
 int m, n;

 if (scanf("%d %d", &m, &n) != 2)
 return 0;

 int A[20][20];

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 scanf("%d", &A[i][j]);

 for (int i = 0; i < m; i++) {
 long soma_linha = 0;
 for (int j = 0; j < n; j++)
 soma_linha += A[i][j];
 printf("Soma da linha %d = %ld\n", i + 1, soma_linha);
 }

 int maior = A[0][0];
 int imax = 0, jmax = 0;

 for (int i = 0; i < m; i++)
 for (int j = 0; j < n; j++)
 if (A[i][j] > maior) {
 maior = A[i][j];
 imax = i;
 jmax = j;
 }
 printf("Maior = %d na posicao (%d,%d)\n", maior, imax + 1, jmax + 1);

 if (m == n) {
 long soma_diag = 0;
 for (int i = 0; i < m; i++)
 soma_diag += A[i][i];
 printf("Soma da diagonal principal = %ld\n", soma_diag);
 } else
 printf("matriz nao quadrada\n");
 return 0;
}

Balneário Camboriú, 9 de fevereiro de 2026.

Professor Luiz A. Hegele Jr. – UDESC/CESFI

Presidente da Banca Examinadora

