@) UDESC

UNIVERSIDADE

| () e,
PROCESSO SELETIVO - 02/2026

GABARITO - PROVA ESCRITA

Area de Conhecimento de Engenharias ou Ciéncias Exatas e da Terra - B.

Questao 1 (20%)

Explique os principios basicos de sistemas de computagao relacionados a execugdo de algoritmos e
programas. Em particular:

a) (7%) Defina o que é um algoritmo e o que é um programa de computador, destacando as diferengas
entre ambos.

b) (7%) Descreva como um algoritmo escrito em uma linguagem de alto nivel € transformado em um
programa executdvel no computador (mencionando o papel de compiladores ou interpretadores, e do
hardware).

c) (6%) Comente sobre a importancia das estruturas de controle (sequéncia, sele¢do e repeti¢do) na
construgéo de algoritmos e na logica de programacao.

Resposta. Baseado em Forbellone & Eberspacher, Lopes & Garcia e Deitel & Deitel.

a) Algoritmo € uma descri¢ao definida de passos para resolver um problema ou executar uma tarefa que
seja independente de uma linguagem especifica. Programa de computador é a implementagao concreta de um
algoritmo (ou de varios) em uma linguagem de programagao especifica que obedece as regras de sintaxe da
linguagem, de modo que possa ser traduzido e executado em um computador.

b) O processo comega com a escrita do algoritmo em uma linguagem de alto nivel, gerando o codigo-
fonte. Um compilador traduz o codigo-fonte para uma forma de baixo nivel e, em seguida, ocorre o linking
(coloquialmente “linkagem”) com bibliotecas para geral um executavel. Para a execugéo, o sistema operacional
carrega o programa na memoria e a CPU executa as instrugdes (em linguagem de maquina), manipulando

dados em registradores e memoéria e realizando operagdes de entrada e saida quando necessario.

c) As estruturas de controle s&o fundamentais pois expressam a logica de um algoritmo de forma



@) UDESC

UNIVERSIDADE

'.1 DO ESTADO DE
SANTA CATARINA

estruturada. A sequéncia define a execugéo das instrugdes na ordem em que séo descritas. Estruturas de

selegéo (if/else, switch/case) permitem tomar decisGes e seguir caminhos diferentes conforme condigbes

ldgicas, 0 que torna o algoritmo adaptavel a diferentes entradas e casos. Estruturas de repeti¢o (for, while, do-

while) permitem executar um conjunto de passos multiplas vezes, seja por um nimero conhecido de iteragoes,

seja até uma condicdo ser satisfeita. Isso é essencial para validagdo de entradas e para processamento de

dados (vetores e matrizes), além de viabilizar algoritmos classicos como busca, contagem, e ordenagéo.

Questao 2 (20%)

Leia uma sequéncia de inteiros até EOF (fim de arquivo). Para cada inteiro x:

- se x =0, ignore o valor e prossiga (ndo conta em nada);

- se x <0, encerre 0 processamento imediatamente;

- se x> 0, acumule a soma apenas dos multiplos de 3.

Ao final, imprima a soma.

Resposta. Segue um padréo de resposta em linguagem C.

#include <stdio.h>

int main(void) {
long soma = 0;

int x;

while (scanf("%d", &x) == 1) {

if (x == 0)
continue;

if (x < 0)
break;

if (x % 3 == 0)

soma +=X;

printf("%Id\n", soma);



@) UDESC

UNIVERSIDADE
. DO ESTADO DE
SANTA CATARINA

return 0;

Questao 3 (20%)

Considere um vetor (array) de n numeros inteiros desordenados.

a) (7%) Apresente um algoritmo para ordenar o vetor em ordem crescente;

b) (6%) Indique qual método de ordenagéo foi utilizado e analise a complexidade de tempo no pior caso
do seu algoritmo;

c) (7%) Caso exista, comente uma melhoria ou um algoritmo de ordenagé&o alternativo que tenha melhor

eficiéncia, mencionando sua complexidade.

Resposta.
a) Segue uma resposta em linguagem C.

#include <stdio.h>

static void insertion_sort(int v[], int n) {
for (inti=1;i<n;i++){

int chave = V[il;

intj=i-1;

while (j >= 0 && v[j] > chave) {
vl + 1] = V(]
I

}

v[j + 1] = chave;

int main(void) {

int n;

if (scanf("%d", &n) != 1) return 0;



@) UDESC
UNIVERSIDADE

. DO ESTADO DE
SANTA CATARINA

int v[n];
for (inti=0;i<n;i++) scanf("%d", &vli]);

insertion_sort(v, n);

for (inti=0;i<n;i++){
if (i) printf(" ");
printf("%d", v[i]);

}

printf("\n");

return 0;

b) No exemplo acima, 0 método utilizado foi o insertion sort. No pior caso (vetor em ordem decrescente),
para cada posicao i o algoritmo pode deslocar aproximadamente i elementos, totalizando cerca de 1
+2 + ...+ (n-1) comparagdes, 0 que leva a complexidade de tempo O(n”2) no pior caso.

c) Um algoritmo com melhor eficiéncia no caso geral € o mergesort, com complexidade O(n log n) no

pior caso.

Questao 4 (20%)

O n-ésimo numero de Fibonacci pode ser definido recursivamente como: F(0)=0, F(1)=1 e F(n)=F(n-
1)+F(n-2) para n=2. Com base nisso:

a) (7%) Escreva um algoritmo recursivo que calcule F(n).

b) (6%) Escreva um algoritmo equivalente de forma iterativa (sem recursao).

¢) (7%) Compare as duas abordagens em termos de conceito e desempenho, discutindo vantagens,
desvantagens e a ordem de complexidade de tempo de cada uma. Apresente um exemplo ilustrando a diferenga
de eficiéncia para valores de n grandes.

Resposta. Conforme DEITEL & DEITEL, segue um exemplo de cddigo para os itens a): funcao fib_rec
e b): fungo (fib_it).



@) UDESC
UNIVERSIDADE

. DO ESTADO DE
SANTA CATARINA

#include <stdio.h>

long fib_rec(int n) {
if (n <= 1) return n;

return fib_rec(n - 1) + fib_rec(n - 2);

long fib_it(int n) {

if (n <= 1) return n;

longa=0;
long b =1;

for (inti=2;i<=n;i++){

longc=a+b;

return b;

int main(void) {
int n;
if (scanf("%d", &n) != 1) return 0;

printf("fib_rec(%d) = %ld\n", n, fib_rec(n));
printf("fib_it(%d) = %ld\n", n, fib_it(n));

return 0;

c) A versdo recursiva expressa de forma a definicdo matematica. A versdo iterativa expressa o calculo

como uma acumulagdo em lago, evitando chamadas recursivas.



@) UDESC

UNIVERSIDADE
. DO ESTADO DE
SANTA CATARINA

A verséo recursiva (fib_rec) recalcula repetidamente os mesmos valores. O tempo de execugao cresce
exponencialmente com n. A vers3o iterativa (fib_it) executa um lago de 2 até n, com trabalho constante por

iteragdo. O tempo de execugédo tem ordem O(n).

Como exemplo, para n grande (digamos n = 100), a vers&o iterativa faz apenas 99 iteragdes do lago e
termina rapidamente.
A versao recursiva faz um grande numero de chamadas , tornando-se muito lenta. De modo pratica, a

diferenga € de muitas ordens de grandeza conforme n aumenta o que a torna inviavel.

Questao 5 (20%)

Leia dois nimeros inteiros m e n (1 <= m,n <= 20) e uma matriz A[m][n]. Com base nisso:

a) (8%) Imprima a soma de cada linha;

b) (8%) Encontre o maior elemento da matriz e imprima valor e posicao (i,j);

C) (4%) Se m = n, calcule a soma da diagonal principal; caso contrario, informe “matriz ndo quadrada’.

Resposta. Segue um padréo de resposta em linguagem C.

#include <stdio.h>

int main(void) {

intm, n;

if (scanf("%d %d", &m, &n) 1= 2)

return 0;
int A[20][20];
for (inti=0;i<m;i++)

for (intj=0;j<n; j++)
scanf("%d", &A[i][]);



UDESC

UNIVERSIDADE
DO ESTADO DE
SANTA CATARINA

for (inti=0;i<m;it++){
long soma_linha = 0;
for (intj=0;j<n;j++)
soma_linha += A[i][j];

printf("Soma da linha %d = %Id\n", i + 1, soma_linha);

int maior = A[0][0];

intimax =0, jmax = 0;

for (inti=0;i<m;i++)

for (intj=0;j<n;j++)

if (A[i][j] > maior) {
maior = A[i][j];
imax = i;
jmax =j;

}

printf("Maior = %d na posicao (%d,%d)\n", maior, imax + 1, jmax + 1);

if (m==n){
long soma_diag = 0;
for (inti=0;i<m;i++)
soma_diag += A[i[i];
printf("Soma da diagonal principal = %ld\n", soma_diag);
} else
printf("matriz nao quadrada\n");

return 0;

Balneario Camboriu, 9 de fevereiro de 2026.

Professor Luiz A. Hegele Jr. - UDESC/CESFI
Presidente da Banca Examinadora



