

Robotics SYLLABUS

I. IDENTIFICATION

Program: Electrical Engineering		
Course: Robotics		
Class hours: 72 hours (4 local credits)	Academic year: 2023/2	Phase: Optative Class
Professor: Douglas Wildgrube Bertol		
Contact: douglas.bertol@udesc.br		

II. SUMMARY

Introduction to Robotics. Robotics and Industrial Automation. Mathematic Basis. Modeling and Kinematic Control of Robot Manipulators. Programming and Industrial Applications of Robot Manipulators. Notions of Mobile Robotics.

III. DIDACTIC PROGRAM

The class will cover, but is not restricted to, the following topics:

- Introduction to robotics: history, social impact, the definition of robots; examples of industrial robot applications;
- Spatial descriptions and transformations: position, orientation, and reference systems; mappings between reference systems; translational, rotational, and transformation operators; arithmetic of transformations;
- Kinematics of manipulators: direct kinematics (simple chain mechanisms, Denavit-Hartenberg notation, and parameters, obtaining transformations between links, and calculation of direct kinematics); Inverse kinematics (existence and multiplicity of solutions, solution methods: algebraic and numerical);
- Kinematic control: generation of trajectories in joint space; generation of trajectories in Cartesian space;
- Notions of mobile robots: types and examples of mobile robots; mobile robot applications; actuators and sensors; odometry and navigation;
- Laboratory: constructive aspects of manipulator robots (robot components, robot morphology, and workspace); simulation of manipulator robot; operation of industrial robot manipulators; programming industrial manipulators.

IV. LEARNING METHODOLOGY

The classes will be developed through lectures, computer simulations, and laboratory practices. Industrial robots from the Manufacturing Automation Laboratory will be used in laboratory practices.

V. ASSESSMENT SYSTEM

The assessment will consist of quizzes, seminars, and group presentations throughout the semester.

IV. BIBLIOGRAPHY

CRAIG, John J. Introduction to Robotics: Mechanics and Control. Pearson, 2017.

NIKU, Saeed B. Introduction to Robotics: Analysis, Control, Applications. Willey, 2020.

SPONG, M. W.; HUTCHINSON, S.; VIDYASAGAR, M. Robot Modeling, and Control, Wiley, 2020.

ODREY, Nicholas, et al. Industrial Robotics -Technology, Programming, and Applications. McGraw Hill Education, 2017.

SIEGWART, Roland.; NOURBAKHSH, Illah R. Introduction to autonomous mobile robots. Massachusetts: MIT Press, 2011.

EVERETT, H. R. Sensors for mobile robots: theory and application. Massachusetts: A. K. Peters, 1995.