

ISOTERMAS DE ADSORÇÃO E TEMPO DE EQUILÍBRIO DA SOLUÇÃO DE GLIFOSATO EM MEIO AQUOSO E EM SOLO¹

Isabela Bellini², David José Miquelluti³, Caroline Aparecida Matias⁴

- ¹ Vinculado ao projeto "Adsorção de glifosato por biochar derivado da casca de banana em solos agrícolas contaminados"
- ² Acadêmica do Curso de Agronomia CAV Bolsista PROBIC
- ³ Orientador, Departamento de Solos e Recursos Naturais CAV david.miquelluti@udesc.br
- ⁴ Doutoranda do Programa de Pós-Graduação em Ciência do Solo CAV

O uso intensivo de glifosato no manejo agrícola tem desencadeado interferências nocivas ao meio ambiente. Assim, o objetivo do estudo foi avaliar a eficiência de adsorção de glifosato em meio aquoso e em solo utilizando biochar oriundo da casca de banana. Todos os ensaios foram conduzidos em batelada, triplicata e a concentração remanescente do glifosato foi determinada utilizando o método descrito por Bhaskara e Nagaraja (2006), isto é, misturou-se 1,0 mL de amostra, 1,0 mL de ninidrina (5%) e 1,0 mL de molibdato de sódio (5%). A mistura foi aquecida por 5 min a 90 °C, na sequência as amostras foram resfriadas em temperatura ambiente e realizada a leitura, utilizando-se espectrofotômetro UV-Vis, em comprimento de onda de 570 nm. Para os ensaios de cinética, manteve-se em contato 0,25 g de biochar de casca de banana com 50 mL da solução de glifosato com concentração inicial de 25,0 mg L⁻¹ e pH 6,0. As alíquotas foram coletadas nos tempos de 1, 5, 10, 30, 60, 120, 240, 480 e 720 min. Os resultados foram ajustados aos modelos não lineares de pseudo-primeira ordem e pseudo-segunda ordem. Os modelos de isotermas foram construídos utilizando 0,25 g de biochar em contato por 120 min com solução de glifosato com concentração inicial de 8,0; 25,0; 50,0; 75,0 e 92,0 mg L⁻¹, com pH 6,0 e volume total de 50 mL. Por fim, os dados foram ajustados ao modelo não linear de Langmuir e ao modelo não linear de Freudlich. Para os ensaios de adsorção em solo, utilizou-se 2,0 g de amostras de Cambissolo incubados com 0,25 g de biochar e pH 6,0. Para se estabelecer o tempo de equilíbrio de adsorção entre a solução de glifosato e o biochar, utilizou-se o método "Batch Equilibrium Method", ou seja, utilizou-se 10 mL de solução de glifosato em concentração inicial 10,0 mg L⁻¹ em contato com 2,0 g de solo com biochar, mantendo-se em agitação por tempos de 1, 5, 10, 30, 60, 120, 240, 480 e 720 min em temperatura de 25 °C. Os dados foram convertidos para eficiência de remoção (Equação 1).

$$\varepsilon \% = \frac{C_i - C_e}{C_i} \times 100 \tag{1}$$

sendo, Ci e C_e (mg L⁻¹) a concentração inicial e de equilíbrio de glifosato.

O melhor ajuste cinético e isotérmico (Tabela 1) foi encontrado utilizando o modelo não linear de pseudo-segunda ordem não linear de Langmuir, confirmados pelos maiores valores de R^2 e menores valores dos χ^2 . O modelo cinético não linear de pseuda-segunda ordem indica um processo de quimissorção, o qual, por sua vez, desenvolve-se através de elevadas energias de interação entre as moléculas de glifosato com a superfície do biochar e proporciona estabilidade no processo. E o modelo de isoterma não linear de Langmuir sinaliza a formação de monocamada

Apoio: CNPq e fapesc Página 1 de 2

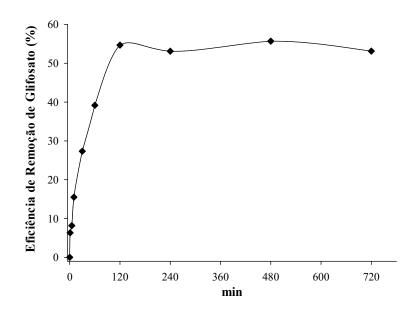

de moléculas de glifosato sobre a superfície do biochar, isto é, cada sítio adsorve uma única molécula do herbicida, não havendo interação entre sítios ativos vizinhos.

Tabela 1. Parâmetros dos modelos cinéticos não lineares de pseudo-primeira ordem e pseudo-segunda ordem e dos modelos de isotermas não lineares de Langmuir e Freudlich durante a adsorção de glifosato utilizando biochar de casca de banana em solução aquosa.

Pseudo-Primeira Ordem			Pseudo-Segunda Ordem			
R²	q _e (mg g ⁻¹)	χ^2	\mathbb{R}^2	q _e (mg g ⁻¹)	χ^2	
0,2539	2,7586	1,6867	0,9469	3,53	0,1201	
I	Isoterma de Langmuir			Isoterma de Freundlich		
	R^2 χ^2			R ² χ	,2	
0,	84592 0,547	92	0,6	52976 1,310	563	

O processo de remoção do herbicida em solo utilizando biochar aconteceu muito rápido (Figura 1), em resposta à afinidade entre as moléculas do adsorvato e a superficie do adsorvente. A eficiência máxima de remoção aumentou rapidamente, atingindo valores de remoção de 53,11%. Após 120 min de adsorção a eficiência de remoção manteve-se constante, devido à saturação dos sítios ativos de ligação da superfície.

Figura 1. Eficiência de remoção de glifosato em Cambissolo utilizando biochar de casca de banana.

Palavras-chave: Herbicida. Remoção. Biochar.