

ESTUDO DA PRODUÇÃO DE FARINHA DE TALO DE BRÓCOLIS¹

Ocsana Helen Franzen², Marlene Bampi³, Andreia Zilio Dinon ⁴, Márcia Bär Schuster⁵

O consumo de brócolis vem aumentando em todo o mundo, uma vez que se entende a necessidade de prevenção de doenças junto à manutenção da saúde através de uma dieta balanceada aliada ao adequado consumo de frutas e hortaliças (Nicoletto, 2016). Estima-se que o Brasil tenha uma área com cerca de 15 mil hectares para o cultivo de brócolis, sendo as regiões Sul, Sudeste e Centro-oeste as regiões de maior concentração (Embrapa, 2015). A industrialização do brócolis é feita utilizando apenas os seus floretes, de modo que o talo se torna descarte. Muitas das plantas alimentícias, bem como as plantas medicinais e aromáticas utilizadas pela indústria são comumente submetidas ao processo de secagem, com o intuito de aumentar a vida útil e manter suas propriedades nutricionais e funcionais. No entanto, há uma escassez de informações sobre a influência da temperatura, velocidade do ar e processos de secagem na qualidade físico-química das plantas alimentícias e seus componentes, como antioxidantes e vitaminas. O objetivo do trabalho é estudar diferentes processos de secagem para a elaboração de farinha de talos de brócolis e avaliar a composição físico-química. Para isso foi feito uma revisão bibliográfica para selecionar os processos de secagem, temperaturas, procedimentos e análises para a caracterização físico-química da farinha e seus componentes, como antioxidantes e vitaminas. Assim como também foi feita uma pesquisa para encontrar a empresa fornecedora da matéria-prima (talos de brócolis) para a elaboração da farinha. Os talos de brócolis (de inflorescência única, também denominado de cabeça-única) serão adquiridos da Grano Alimentos Brasil e serão higienizados com hipoclorito de sódio (200mg/L) por 15 minutos e padronizados o tamanho dos mesmos (Figura 1). As amostras de talos de brócolis serão submetidas a secagem em estufa com circulação de ar forçada (secagem convectiva) e em estufa a vácuo (secagem à vácuo), nas temperaturas de 40°C e 60°C por 24 h. Os processos de secagem convectiva à pressão atmosférica são os mais difundidos e tradicionalmente utilizados na indústria de alimentos. No entanto, geralmente apresentam baixas taxas de secagem e são relativamente lentos, devido à baixa condutividade térmica dos alimentos. Por outro lado, processo de secagem a vácuo ocorre a baixas pressões, inferiores a 100 kPa. Sendo um processo adequado para secar alimentos sensíveis ao calor e que apresentam propriedades oxidativas, pois pode ser conduzida a temperaturas inferiores àquelas utilizadas na secagem convectiva. O que justifica a aplicação desse processo de secagem para a conservação dos antioxidantes. Uma vez, que esses, apresentam alta instabilidade durante o processamento de secagem, pois são sensíveis a altas temperaturas, presença de luz e oxigênio. Para a determinação das curvas de secagem dos diferentes processos, três amostras de 20 g serão removidas a cada quatro horas. As taxas dos diferentes processos de secagem e os coeficientes de determinação (R2) nos períodos de taxa

Apoio: CNPq e fapesc Página 1 de 2

¹ Vinculado ao projeto "Estudo do processo de secagem e isotermas de sorção de farinhas vegetais e produtos alimentícios"

² Acadêmica do Curso de Engenharia de Alimentos – CEO – Bolsista PROIP

³ Orientador, Departamento de Engenharia de Alimentos e Engenharia Química – CEO – marlene.bampi@udesc.br

^{4,5}Docentes Doutoras do Departamento de Engenharia de Alimentos e Engenharia Química – CEO

constante, decrescente e próxima de zero durante a secagem serão calculados através do ajuste de uma reta aos valores médios de umidade. A farinha de talos de brócolis será caracterizada em relação ao teor de proteínas (método nº 991.20), umidade (método nº 925.09), lipídeos (método nº 963.15), pH (método nº 920.153) e cinzas (método nº 920.153), de acordo com os métodos oficiais da AOAC (2000). Os parâmetros de cor determinados, por meio de um calorímetro MiniScan (HunterLab, model EZ, Reston, VA, USA), e a cor expressa pelo sistema de coordenadas CIE LAB. A Aw determinada por meio de um higrômetro Aqualab®. Acidez titulável determinada pelo método nº 920.153. A análise de granulometria determinada com auxílio de agitador de peneiras com malhas de abertura 14, 28, 35, 48 e 100 mesch. Os carboidratos determinados por diferença, segundo a conversão de AtWater. O teor de carotenoides (β-caroteno e licopeno) será determinado em espectrofotômetro, a 450 nm para determinação de β-caroteno e a 470 nm para determinação de licopeno, de acordo com Rodriguez-Amaya (2001). Até o momento, só foram feitos alguns testes de secagem convectiva à 60°C, Figura 1. Os resultados deste estudo têm importância tecnológica, por contribuir com informações/parâmetros para o processo de secagem de talos de brócolis. Assim como contribuir informações nutricionais da farinha, o que permite direcionar para melhor utilização/aplicação em produtos alimentícios, os quais podem ser enriquecidos nutricionalmente com a adição da farinha de brócolis. Segundo a literatura, as partes não aproveitáveis dos alimentos, podem ser mais nutritivos do que a parte nobre do vegetal, sendo boa fonte de fibras, lipídios, minerais, como ferro e até mesmo vitaminas. A elaboração de farinha de talos de brócolis é uma alternativa interessante de reaproveitamento e redução do desperdício, aumentando o valor nutricional dos alimentos.

Talos de brócolis in natura

Talos de brócolis desidratados

Farinha de talos de brócolis

Figura 1. Fluxograma da obtenção de farinha de talos de brócolis do tipo inflorescência única desidratados à 60 °C por secagem convectiva.

Palavras-chave: Brócolis. Secagem. Farinha. Caracterização físico-química.

Apoio: CNPq e fapesc Página 2 de 2