

PROGNOSE DA ESTRUTURA DIAMÉTRICA POR MEIO DA RAZÃO DE MOVIMENTO EM FLORESTA OMBRÓFILA MISTA ALTO-MONTANA EM SANTA CATARINA

Otávio Miguel Weber¹, Thiago Floriani Stepka²

¹Vinculado ao projeto "Dinâmica em Floresta Ombrófila Mista Alto-Montana em diferentes gradientes de altitude na região serrana de Santa Catarina"

¹Acadêmico do Curso de Engenharia Florestal do CAV - bolsista PIBIC/CNPq ² Orientador, Departamento de Engenharia Florestal, CAV - thiago.stepka@udesc.br

O bioma Mata Atlântica está presente em Santa Catarina, e uma das tipologias florestais encontradas nessa região é a Floresta Ombrófila Mista (FOM) Alto-Montana. Essa tipologia ocorre em áreas de maior altitude, igual ou acima de 1000 metros, nas regiões montanhosas de Santa Catarina. Essas florestas são caracterizadas por sua vegetação exuberante e adaptada a condições climáticas mais frias e úmidas, apresentando uma rica biodiversidade de espécies vegetais e animais. São ambientes importantes para a conservação e proteção da biodiversidade da Mata Atlântica, proporcionando habitats únicos para muitas espécies endêmicas e ameaçadas de extinção.

O fragmento utilizado como fonte de dados para essa pesquisa localiza-se no município de Urupema-SC, em uma área de relevo classificado como fortemente ondulado. No ano de 2012, instalaram-se 3 transectos, seguindo o gradiente de declividade da região, com unidades amostrais permanentes de 10 x 20 m (200 m²). Cada transecto é composto por diferentes números de parcelas, sendo que o transecto T1 possui 7 parcelas, o T2 possui 9 e o T3 tem 11 parcelas.

Para a mensuração florestal foram incluídas as árvores com CAP (circunferência à altura do peito) maior ou igual a 15,8 cm ou 5 cm de DAP (diâmetro à altura do peito), as bifurcações abaixo de 1,30 m foram consideradas como apenas um indivíduo. Em 2022 foram feitas as remedições dos transectos, baseando-se nos mesmos critérios da medição que ocorreram nos anos anteriores (2012 e 2017), sendo considerados ingressos os indivíduos que atingiram o DAP mínimo de 5 cm, e avaliando a quantidade de indivíduos que morreram neste período.

Tendo como base os dados de 2012 e 2017, realizou-se a projeção para o ano de 2022 por meio do modelo Razão de Movimento. Com os dados reais, mensurados em 2022, foi possível constatar se o modelo adere ou não ao fragmento estudado. Essa metodologia de prognose florestal é muito utilizada para florestas mistas, pois se trabalha com indivíduos de diversas idades, tendo como principal ferramenta as classes de diâmetro. A Razão de Movimento é uma medida que indica a relação entre a taxa de ingresso e a taxa de mortalidade de árvores em uma florestal, fornecendo percepções sobre a dinâmica populacional das árvores ao longo do tempo. A prognose pelo modelo é obtida pela proporção (porcentagem) de árvores que passam de uma classe diamétrica para outra.

Na Tabela 1 é possível observar a prognose realizada para o ano de 2022, na Figura 1 o gráfico demonstrando as distribuições diamétricas das medições realizadas nos anos 2012, 2017 e 2022 junto com a projeção para o ano de 2022. Para a validação da Razão de Movimento foi utilizado o teste Kolmogorov-Smirnov, com o objetivo de verificar a adesão do modelo aos dados coletados. O teste obteve os seguintes resultados, Dcalc=0,0459 e Dn=0,0359, onde se Dcalc for menor ou igual ao Dn aceita-se H0 e se o Dcalc for maior que o Dn rejeita-se H0. Com base na análise, observou-se que o modelo em estudo não apresentou ardência à floresta, podendo ser atribuída a diversas razões, como possíveis inconsistências nos dados, influências de fatores ambientais e outros eventos relevantes, não se limitando apenas à tipologia da floresta.

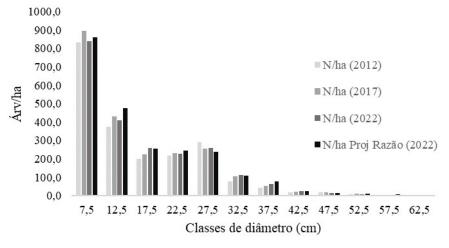


Tabela 1. Tabela do desenvolvimento da prognose da estrutura diamétrica pelo método da Razão de Movimento.

Classe DAP	N/ha (2017)	IP (cm/5anos)	Ing./ha	Mort./ha	RM	Porcentagem de árvores movidas 0 classes 1 classe		Árv. após Movimento	N/ha 2022
7.5	905 6	0.0	190.7	00.2	15.2	0,85		758,2	Proj 859,7
7,5	895,6	0,8	189,7	88,2	15,3		0,15		,
12,5	429,4	0,9	12,5	28,7	17,4	0,83	0,17	491,9	475,7
17,5	223,5	0,7	11,8	22,8	14,0	0,86	0,14	267,1	256,1
22,5	230,9	0,5	22,8	16,9	9,6	0,90	0,10	239,9	245,8
27,5	255,9	0,8	8,1	8,1	16,2	0,84	0,16	236,8	236,8
32,5	105,9	1,6	0,0	5,9	32,1	0,68	0,32	113,3	107,4
37,5	52,9	1,1	2,9	1,5	22,0	0,78	0,22	75,3	76,7
42,5	20,6	1,7	1,5	2,9	33,6	0,66	0,34	25,3	23,9
47,5	16,2	1,4	0,0	2,9	27,6	0,72	0,28	18,6	15,7
52,5	10,3	2,0	0,0	0,0	40,3	0,60	0,40	10,6	10,6
57,5	2,9	0,5	0,0	0,0	9,5	0,90	0,10	6,8	6,8
62,5	0,0	0,0	0,0	0,0	0,0	1,00	0,0	0,3	0,3
	2244,1		249,3	177,9					2315,4

Legenda: N/ha (2017) = Número de árvores por hectare no ano de 2017; IP = Incremento periódico diamétrico (cm/5anos); Ing./ha = Árvores ingressas por hectare; Mort./ha = Árvores mortas por hectare; RM = Razão de movimento; Árv. após Movimento = Árvores por classe diamétrica após a movimentação; N/ha 2022 Proj = Numero de árvores projetadas para o ano de 2022.

Figura 1. Número de árvores por hectare por classe de diâmetro obtido nos inventários dos anos de 2012, 2017, 2022 e a projeção para 2022.

Palavras-chave: Floresta com araucária. Floresta da altitude. Projeção da distribuição diamétrica.

