

AVALIAÇÃO DA QUALIDADE DE OVOS ATRAVÉS DA ESPECTROSCOPIA DE IMPEDÂNCIA ELÉTRICA COMBINADA COM ANÁLISE DISCRIMINANTE LINEAR¹

Henrique Ismael Schwerz², Weber da Silva Robazza³, Alessandro Cazonatto Galvão⁴, Marcel Manente Boiago⁵, Eduarda Caggiano dos Santos Leite⁶, Eduarda Degani Araújo⁶

- ¹ Vinculado ao projeto "Caracterização da qualidade de ovos através da Espectroscopia de Impedância Elétrica"
- ² Acadêmico do Curso de Engenharia Química CEO Bolsista PROBIC/UDESC
- ³ Orientador, Departamento de Engenharia de Alimentos e Engenharia Química CEO weber.robazzi@udesc.br
- ⁴ Professor, Departamento de Engenharia de Alimentos e Engenharia Química CEO
- ⁵ Professor, Departamento de Zootecnia CEO
- ⁶ Acadêmica do Curso de Engenharia Química CEO

A Espectroscopia de Impedância Elétrica (EIE) é uma técnica experimental antiga, a qual foi desenvolvida no final do século 19 e que somente recentemente começou a ser empregada para a análise e caracterização de alimentos. Com efeito, nos últimos 20 anos podem ser encontrados diferentes artigos avaliando o uso da EIE para a caracterização de diferentes produtos lácteos, tais como queijos, iogurtes e amostras de leite cru, além de bebidas, azeite de oliva e mel entre outros produtos.

Do ponto de vista experimental, a técnica consiste na inserção de eletrodos na superfície do material a ser analisado e sinais de corrente alternada de diferentes frequências atravessam os eletrodos. A resistência à passagem da corrente alternada, também denominada de impedância elétrica, é medida para cada frequência de corrente empregada e, assim, obtém-se o espectro de impedância elétrica. Em algumas situações, para se estudar as propriedades físicas do sistema analisado, é proposto um circuito elétrico equivalente o qual reproduz o comportamento elétrico exibido pelo espectro. Este circuito pode ser composto por elementos como, por exemplo, resistências, capacitâncias, indutâncias ou elementos mais complexos, tais como o elemento de fase constante. Em outras situações, o espectro de impedância é analisado através de técnicas de análise multivariadas com o intuito de se classificar ou prever o valor de propriedades de interesse para o pesquisador.

Portanto, o presente estudo teve o objetivo de avaliar a viabilidade da EIE para quantificar indicadores de qualidade de ovos. Foram avaliados os seguintes atributos de qualidade dos ovos: Unidade Haugh, índice gema e pH do albúmen. O espectrômetro de impedância foi cedido pela empresa Bonexus Tecnologia Ltda localizada no município de Chapecó/SC e as amostras de ovos marrons foram cedidas pelo Laboratório de Nutrição Animal localizado no Departamento de Zootecnia da Udesc em Chapecó/SC. Os ovos foram armazenados à temperatura ambiente (aproximadamente 20 °C) por 35 dias, sendo que grupos compostos por 5 ovos foram analisados de 7 em 7 dias resultando em um total de 30 amostras. Os eletrodos, de forma a considerar assimetrias na geometria de cada ovo, foram acoplados nos ovos em 6 configurações diferentes conforme mostra a Figura 1. O espectro era composto de 56 frequências de corrente alternada entre 20 e 1500 KHz. Após mensuração dos espectros, os ovos foram quebrados e os atributos de qualidade foram mensurados para cada amostra.

Para se avaliar a predição do tempo de armazenamento dos ovos através dos dados dos espectros, um modelo de análise discriminante linear (LDA, na sigla em inglês) foi desenvolvido o qual usou o tempo de armazenamento como resposta (6 grupos, sendo 1 correspondente a cada período de armazenamento) e as 56 frequências foram empregadas como variáveis explicativas. O modelo foi treinado e validado usando validação cruzada k-fold com k=5. A Tabela 1 apresenta a matriz de confusão obtida. O modelo classificou corretamente 57,22% das observações, sendo que os maiores erros ocorreram para previsões em classes vizinhas. Portanto, conclui-se que o modelo não é capaz de prever exatamente o período de armazenamento, mas é adequado para prever o tempo com uma incerteza média de uma semana.

Figura 1. Aparato experimental usado no presente estudo.

Tabela 1. Matriz de confusão obtida após a aplicação da análise discriminante linear aos dados.

	Observado					
Predito	Grupo 1	Grupo 2	Grupo 3	Grupo 4	Grupo 5	Grupo 6
Grupo 1	19	11	0	0	0	0
Grupo 2	7	16	4	3	0	0
Grupo 3	4	2	18	8	2	0
Grupo 4	0	1	6	15	6	5
Grupo 5	0	0	2	4	17	7
Grupo 6	0	0	0	0	5	18

Palavras-chave: Qualidade dos ovos. Espectroscopia de Impedância Elétrica. Tempo de Armazenamento.

